
OpenSplice DDS
Version 6.x

Getting Started Guide
�������	

OpenSplice DDS
GETTING STARTED GUIDE
Part Number: OS-GSG Doc Issue 56, 16 January 2014
PRISMTECH

Copyright Notice
© 2014 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Getting Started Guide

�������	

CONTENTS

Table of Contents
Preface

About the Getting Started Guide . ix

About OpenSplice DDS
Chapter 1 Why OpenSplice DDS 3

1.1 What is OpenSplice DDS? . 3
1.2 Why Use It? . 3
1.3 OpenSplice DDS Summary . 3
1.4 OpenSplice DDS Architecture . 4
1.4.1 Overall . 4
1.4.2 Scalability . 4
1.4.3 Configuration. 5
1.4.4 Single Process Library Architecture . 5
1.4.5 Shared Memory architecture . 6
1.5 OpenSplice DDS Implementation Benefits. 7
1.6 Conclusion . 9

Chapter 2 Product Details 11
2.1 Key Components . 11
2.1.1 Services . 11
2.1.2 Tools . 11
2.2 Key Features . 11
2.3 Language and Compiler Bindings. 12
2.3.1 Building your own C++ and CORBA APIs . 13
2.3.1.1 Building your own ISO C++ API . 13
2.3.1.2 Building your own Standalone C++ API . 13
2.3.1.3 Building your own CORBA C++ API . 13
2.3.1.4 Building your own CORBA Java API . 13
2.4 Platforms . 14

Using OpenSplice DDS
Chapter 3 Documentation 17

Chapter 4 Information Sources 19
4.1 Product Information. 19
4.1.1 Knowledge Base . 19
4.1.2 Additional Technical Information . 19
v
Getting Started Guide

�������	

Table of Contents
4.2 Support . 19

Installation and Configuration
Chapter 5 Installation and Configuration 23

5.1 OpenSplice DDS Development and Run-Time . 23
5.2 Installation for UNIX and Windows Platforms. 23
5.3 Installation on Other Platforms . 24
5.4 Configuration . 24
5.5 Examples . 27
5.5.1 Using the OpenSplice Tools . 27

Chapter 6 Licensing OpenSplice 29
6.1 General . 29
6.1.1 Development and Deployment Licenses . 29
6.2 Installing the License File . 29
6.3 Running the License Manager Daemon . 30
6.3.1 Utilities . 31

Platform-specific Information
Chapter 7 VxWorks 5.5.1 35

7.1 Building a VxWorks Kernel . 35
7.2 Scenarios for Building the OpenSplice Examples . 36
7.2.1 The OpenSplice Examples
 (All linked in one complete DKM – recommended) 36
7.2.1.1 To build the standalone C PingPong example . 36
7.2.1.2 Note about the example projects . 36
7.2.1.3 The osplconf2c tool . 36
7.2.1.4 Overriding OpenSplice configuration at runtime . 37
7.2.1.5 Running the Examples . 37
7.2.1.6 Background. 37
7.2.1.7 How to start spliced and related services . 38
7.2.1.8 The osplconf2c command. 39
7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs) . 39
7.3.1 To build the standalone C pingpong example . 39
7.3.2 How to start spliced and related services. 40
7.3.3 To run the C PingPong example from winsh . 40
7.3.4 Load-time Optimisation: pre-loading OpenSplice Service Symbols 41
7.3.5 Notes . 41
vi
Getting Started Guide �������	

Table of Contents
Chapter 8 VxWorks 6.x RTP 43
8.1 Installation. 43
8.2 VxWorks Kernel Requirements . 43
8.3 Deploying OpenSplice DDS . 44
8.4 OpenSplice Examples . 46
8.4.1 Importing Example Projects into Workbench . 46
8.4.2 Building Example Projects with Workbench . 46
8.4.3 Deploying OpenSplice Examples . 47
8.4.3.1 Deploying PingPong. 47
8.4.3.2 Deploying the Chat Tutorial . 47

Chapter 9 VxWorks 6.x Kernel Mode 49
9.1 VxWorks Kernel Requirements . 49
9.2 Deploying OpenSplice DDS . 49
9.2.1 Special notes for this platform. 50
9.3 OpenSplice Examples . 50
9.3.1 Importing Example Projects into Workbench . 50
9.3.2 Building Example Projects with Workbench . 50
9.4 Running the Examples
 (All linked in one complete DKM - recommended). 50
9.4.1 Running the examples on two targets . 51
9.4.1.1 The C pingpong example . 51
9.4.1.2 The C++ pingpong example . 51
9.4.2 Running the examples on one target . 52
9.4.2.1 The C pingpong example . 52
9.4.2.2 The C++ pingpong example . 52
9.4.3 Using a different path . 53
9.4.4 Note about the example projects . 53
9.4.5 Running the Examples
 (Alternative scenario, with multiple DKMs – ‘AppOnly’ style) 53
9.4.5.1 The C pingpong example . 54
9.4.6 Running the examples on one target . 55
9.4.6.1 Load-time Optimisation: pre-loading OpenSplice Service Symbols 55
9.4.6.2 Notes . 56
9.4.7 The osplconf2c tool . 56
9.4.7.1 Overriding OpenSplice configuration at runtime . 56
9.4.7.2 The osplconf2c command. 56

Chapter 10 Integrity 59
10.1 The ospl_projgen Command . 59
10.1.1 Description of the arguments. 59
10.1.2 Using mmstat and shmdump diagnostic tools on Integrity 60
vii
Getting Started Guide

�������	

Table of Contents
10.2 PingPong Example . 60
10.3 Changing the ospl_projgen Arguments . 63
10.3.1 Changing the generated OpenSplice DDS project using Multi 63
10.4 The ospl_xml2int Tool . 64
10.4.1 The ospl_xml2int command . 65
10.4.2 Description of the arguments. 65
10.5 Critical Warning about Object 10 and Object 11 67
10.6 Amending OpenSplice DDS Configuration with Multi. 68

Chapter 11 Windows CE 69
11.1 Prerequisites . 69
11.2 Setting Registry Values with a CAB File . 70
11.2.1 Alternatives to CAB file . 70
11.3 The OpenSplice DDS Environment . 70
11.4 Secure Networking . 71
11.4.1 Building OpenSSL for Windows CE 6.0. 71
11.4.1.1 Prerequisites . 71
11.5 Deploying OpenSplice DDS . 74
11.6 Using the mmstat Diagnostic Tool on Windows CE 74
11.7 OpenSplice Examples . 75
11.7.1 Building the examples . 75
11.7.2 Deploying the PingPong example . 75
11.7.3 Deploying the Tutorial example . 76

Chapter 12 PikeOS POSIX 77
12.1 How to Build for PikeOS . 77
12.2 Deployment Notes . 77
12.3 Limitations . 78
12.4 PikeOS on Windows Hosts. 78
12.4.1 Building the examples . 78
12.4.2 Using a custom LwIP . 79

Chapter 13 ELinOS 81
13.1 Deployment notes . 81
13.2 Limitations . 81
viii
Getting Started Guide �������	

Preface
About the Getting Started Guide

The Getting Started Guide is included with the OpenSplice DDS Documentation
Set. This guide is the starting point for anyone using, developing or running
applications with OpenSplice DDS.

This Getting Started Guide contains:

• general information about OpenSplice DDS

• a list of documents and how to use them

• initial installation and configuration information for the various platforms which
OpenSplice DDS supports (additional detailed information is provided in the User
and Deployment Guides)

• details of where additional information can be found, such as the OpenSplice
FAQs, Knowledge Base, bug reports, etc..

Intended Audience
The Getting Started Guide is intended to be used by anyone who wishes to use the
OpenSplice DDS product.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Getting Started Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix-based systems (e.g. Solaris) only.
C language specific.
C++ language specific.
C# language specific.
Java language specific.
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross-references (e.g.
Contacts on page x) act as hypertext links; click on the reference to go to the item.

i
WIN

UNIX

C
C++
 C#
Java
ix
Getting Started Guide

�������	

Preface
Courier fonts (also italic and bold) indicate programming code and file names.
Extended code fragments are shown using Courier font in shaded boxes:

Italics and bold italics are used to indicate new terms, or emphasise an item.
Sans-serif and bold sans-serif indicate Graphical User Interface (GUI) and
Integrated Development Environment (IDE) elements and commands; for example,
‘click the Cancel button’ and ‘choose File > Save’.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
x
Getting Started Guide

�������	

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

ABOUT

OPENSPLICE DDS

CHAPTER

1 Why OpenSplice DDS
1.1 What is OpenSplice DDS?

The purpose of OpenSplice DDS is to provide an infrastructure and middleware
layer for real-time distributed systems. This is a realisation of the OMG-DDS-DCPS
Specification for a Data Distribution Service based upon a Data Centric Publish
Subscribe architecture.

1.2 Why Use It?
OpenSplice DDS provides an infrastructure for real-time data distribution and offers
middleware services to applications. It provides a real-time data distribution service
that aims at:
• reducing the complexity of the real-time distributed systems
• providing an infrastructure upon which fault-tolerant real-time systems can be

built
• supporting incremental development and deployment of systems

1.3 OpenSplice DDS Summary
PrismTech’s OpenSplice DDS, is a second generation, fully compliant OMG DDS
implementation, offering support for all the DCPS profiles (minimum profile,
ownership profile, content subscription profile and persistence profile). OpenSplice
DDS was initially developed as SPLICE-DDS by Thales Naval Netherlands (TNL),
one of the co-authors of the DDS specification and is the result of TNL’s over 15
year experience in developing distributed information systems for naval Combat
Management Systems (CMS). This field proven middleware is used as the
‘information backbone’ of TNL’s TACTICOS CMS currently deployed in over 18
navies around the world. OpenSplice DDS is the 2nd-generation COTS evolution of
this successful product and consists of several modules that cover the full OMG
specification as well as provision of total lifecycle support by an integrated
productivity tool suite:
• OpenSplice DDS core modules cover the ‘Minimum’ and ‘Ownership’ profiles

that provide the basic publish-subscribe messaging functions. The minimum
profile is meant to address real time messaging requirements, where performance
3
 About OpenSplice DDS�������	

 1.4 OpenSplice DDS Architecture

and small footprint are essential. The ownership profile provides basic support for
replicated publishers where ‘ownership’ of published data is governed by
‘strength’ indicating the quality of published information.

• OpenSplice DDS content subscription and persistence profiles provide the
additional information management features, key for assuring high information
availability (fault-tolerant persistence of non-volatile information) as well as
powerful ‘content aware’ features (filters and queries), thus enabling unmatched
performance for the full range of small scale embedded up to large scale
fault-tolerant systems.

Free evaluation licenses for OpenSplice DDS are available by e-mailing
sales@prismtech.com. Currently supported platforms include Solaris Sparc, Linux
x86, VxWorks PowerPC, x86 and VxSimulator and Windows x86, and supported
languages are C, C++ (standalone or in seamless cohabitation with any ORB and
related C++ compiler), Java and C#.

1.4 OpenSplice DDS Architecture
1.4.1 Overall

To ensure scalability, flexibility and extensibility, OpenSplice DDS has an internal
architecture that, when selected, uses shared memory to ‘interconnect’ not only all
applications that reside within one computing node, but also ‘hosts’ a configurable
and extensible set of services. These services provide ‘pluggable’ functionality such
as networking (providing QoS driven real-time networking based on multiple
reliable multicast ‘channels’), durability (providing fault tolerant storage for both
real-time ‘state’ data as well as persistent ‘settings’), and remote control &
monitoring ‘soap service’ (providing remote web based access using the SOAP
protocol from the OpenSplice DDS Tuner tools).

1.4.2 Scalability
OpenSplice DDS is capable of using a shared-memory architecture where data is
physically present only once on any machine, and where smart administration still
provides each subscriber with his own private ‘view’ on this data. This allows a
subscriber's data cache to be perceived as an individual ‘database’ that can be
content-filtered, queried, etc. (using the content-subscription profile as supported by
OpenSplice DDS). This shared-memory architecture results in an extremely small
footprint, excellent scalability and optimal performance when compared to
implementations where each reader/writer are ‘communication endpoints’ each with
its own storage (in other words, historical data both at reader and writer) and where
the data itself still has to be moved, even within the same physical node.
4
About OpenSplice DDS

�������	

mailto:sales@prismtech.com

 1.4 OpenSplice DDS Architecture

1.4.3 Configuration
OpenSplice DDS is highly configurable, even allowing the architectural structure of
the DDS middleware to be chosen by the user at deployment time. OpenSplice DDS
can be configured to run using a shared memory architecture, where both the DDS
related administration (including the optional pluggable services) and DDS
applications interface directly with shared memory. Alternatively, OpenSplice DDS
also supports a single process library architecture, where one or more DDS
applications, together with the OpenSplice administration and services, can all be
grouped into a single operating system process. Both deployment modes support a
configurable and extensible set of services, providing functionality such as:
• networking - providing QoS-driven real-time networking based on multiple

reliable multicast ‘channels’
• durability - providing fault-tolerant storage for both real-time state data as well as

persistent settings
• remote control and monitoring SOAP service - providing remote web-based

access using the SOAP protocol from the OpenSplice Tuner tool
• dbms service - providing a connection between the real-time and the enterprise

domain by bridging data from DDS to DBMS and vice versa
The OpenSplice DDS middleware can be easily configured, on the fly, using its
pluggable architecture: the services that are needed can be specified together with
their optimum configuration for the particular application domain, including
networking parameters, and durability levels for example).
There are advantages to both the single process and shared memory deployment
architectures, so the most appropriate deployment choice depends on the user’s
exact requirements and DDS scenario.

1.4.4 Single Process Library Architecture
This deployment allows the DDS applications and OpenSplice administration to be
contained together within one single operating system process. This single process
deployment option is most useful in environments where shared memory is
unavailable or undesirable. As dynamic heap memory is utilized in the single
process deployment environment, there is no need to pre-configure a shared
memory segment which in some use cases is also seen as an advantage of this
deployment option.
Each DDS application on a processing node is implemented as an individual,
self-contained operating system process (i.e. all of the DDS administration and
necessary services have been linked into the application process). This is known as a
5
About OpenSplice DDS�������	

 1.4 OpenSplice DDS Architecture

single process application. Communication between multiple single process
applications co-located on the same machine node is done via the (loop-back)
network, since there is no memory shared between them.
An extension to the single process architecture is the option to co-locate multiple
DDS applications into a single process. This can be done be creating application
libraries rather than application executables that can be ‘linked’ into the single
process in a similar way to how the DDS middleware services are linked into the
single process. This is known as a single process application cluster.
Communication between clustered applications (that together form a single process)
can still benefit from using the process’s heap memory, which typically is an order
of magnitude faster than using a network, yet the lifecycle of these clustered
applications will be tightly coupled.
The Single Process deployment is the default architecture provided within
OpenSplice and allows for easy deployment with minimal configuration required
for a running DDS system.
Figure 1 shows an overview of the single process architecture of OpenSplice DDS.

Figure 1 The OpenSplice Single Process Architecture

1.4.5 Shared Memory architecture
In the shared memory architecture data is physically present only once on any
machine but smart administration still provides each subscriber with his own private
view on this data. Both the DDS applications and OpenSplice administration
interface directly with the shared memory which is created by the OpenSplice

Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Single Process ApplicationSingle Process Application

networknetwork

Application codeApplication code
OpenSplice-lib

In-process Heap MemoryIn-process Heap Memory

Disk
(XML/Binary)

Disk
(XML/Binary)

Config
(XML)
Config
(XML)

OpenSplice-lib

DomainDomain
Service Threads

OpenSplice-lib

Network/DDSI2Network/DDSI2
Service Threads

OpenSplice-lib

DurabilityDurability
Service Threads

OpenSplice-lib

TunerTuner
Service Threads

OpenSplice-lib

DBMSDBMS
Service Threads

RDBMS
(database)
RDBMS
(database)

Spliced-lib Spliced-lib Spliced-libSpliced-libSpliced-lib

Spliced-libTUNER
OpenSplice
6
About OpenSplice DDS

�������	

 1.5 OpenSplice DDS Implementation Benefits

daemon on start up. This architecture enables a subscriber’s data cache to be seen as
an individual database and the content can be filtered, queried, etc. by using the
OpenSplice content subscription profile.
Typically for advanced DDS users, the shared memory architecture is a more
powerful mode of operation and results in extremely low footprint, excellent
scalability and optimal performance when compared to the implementation where
each reader/writer are communication end points each with its own storage (i.e.
historical data both at reader and writer) and where the data itself still has to be
moved, even within the same platform.
Figure 2 shows an overview of the shared memory architecture of OpenSplice DDS
on one computing node. Typically, there are many nodes within a system.

Figure 2 The OpenSplice Shared Memory Architecture
Figure 2 only shows one node whereas there are typically many nodes within a
system.

1.5 OpenSplice DDS Implementation Benefits
Table 1 below shows the following aspects of OpenSplice DDS, where:

Features significant characteristics of OpenSplice
Advantages shows why a feature is important
Benefits describes how users of OpenSplice can exploit the advantages

Computing NodeComputing Node

networknetwork

App-1 ProcessApp-1 Process

OpenSplice-libSpliced-lib

App-2 ProcessApp-2 Process

OpenSplice-lib

App-3 ProcessApp-3 Process

OpenSplice-lib

Shared MemoryShared Memory

Disk
(XML/Binary)

Disk
(XML/Binary)

Config
(XML)
Config
(XML)

OpenSplice-lib

DomainDomain
Service Process

OpenSplice-lib

Network/DDSI2Network/DDSI2
Service Process

OpenSplice-lib

DurabilityDurability
Service Process

OpenSplice-lib

TunerTuner
Service Process

OpenSplice-lib

DBMSDBMS
Service Process

RDBMS
(database)
RDBMS
(database)

Spliced-lib Spliced-lib

Spliced-libSpliced-libSpliced-libSpliced-libSpliced-lib

TUNER
OpenSplice

i

7
About OpenSplice DDS�������	

 1.5 OpenSplice DDS Implementation Benefits

Table 1 OpenSplice DDS Features and Benefits

Features Advantages Benefits
General Information-centric Enable dynamic, loosely

coupled system.
Simplified & better scalable
architectures

Open standard 'Off the shelf' solutions Lower cost, no vendor lock
in

B u i l t o n p r o v e n
technology

I n t e n d e d f o r m o s t t h e
demanding situations.

A s s u r e d q u a l i t y a n d
applicability

TNN/PT ‘inheritance’ D e c a d e l o n g o f ‘ D D S ’
experience

Proven suitability in mission
critical domain

Open Source model S t r o n g a n d l a rg e u s e r
community

Security of Supply of most
widely used DDS

Functional Real-time pub/sub Dynamic/asynchronous data
communication

Autonomous decoupled
applications

Persistence profile F a u l t t o l e r a n t d a t a
persistence

Application fault tolerance
and data high availability

Content-sub. Profile R e d u c e d c o m p l e x i t y &
higher performance.

Easier application design &
scalable systems

Performance Shared memory low footprint, instant data
availability

Processor Scalability

Smart networking Efficient data transport Network Scalability
Extensive IDL sup. Includes unbounded strings,

sequences
Data Scalability

Usability Multiple language Any (mix) of C, C++, Java,
C#

Supports (legacy) code,
allows hybrid systems

Multiple platforms Any (mix) of Enterprise &
RTE Oss

Intercons, enterprise and
embedded systems

Interoperability DDSI/RTPS Interoperability between
DDS vendors

Smooth integration with
non-OpenSplice (legacy)
DDS systems

Tooling and Ease
of use

All metadata at runtime Dynamic discovery of all
‘entity info’

Guaranteed data integrity

Powerful tooling Support for complete system
lifecycle

Enhanced productivity and
System Integration

Remote connect Web based remote access &
control

Remote diagnostics using
standard protocols

Legend: Equal to competition Better than competition Far surpassing competition
8
About OpenSplice DDS

�������	

 1.6 Conclusion

1.6 Conclusion
PrismTech’s OpenSplice DDS product complemented by its tool support together
encompass the industry’s most profound expertise on the OMG’s DDS standard and
products.
The result is unrivalled functional DDS coverage and performance in large-scale
mission-critical systems, fault tolerance in information availability, and total
lifecycle support including round-trip engineering. A complete DDS solution to
ensure a customer's successful adoption of this exciting new technology and to
support delivery of the highest-quality applications with the shortest time to market
in the demanding real-time world.
9
About OpenSplice DDS�������	

 1.6 Conclusion

10
About OpenSplice DDS

�������	

CHAPTER

2 Product Details
2.1 Key Components

OpenSplice DDS’s include the key components listed here.

2.1.1 Services
• Domain Service (spliced) - manages a DDS domain
• Durability Service - responsible for handling non-volatile data
• Networking Service - responsible for handling communication between a node

and the rest of the nodes on ‘the network’
• Tuner Service - responsible for providing control and monitoring functionality for

OpenSplice DDS Systems

2.1.2 Tools
• IDL Preprocessor - generates topic types, type-specific readers and writers
• OpenSplice Tuner - makes it possible for you to easily configure, tune, and inspect

a deployed system
• OpenSplice Configurator - simplifies the process for configuring the services
• mmstat - helps to monitor the memory usage within OpenSplice DDS.
• MDE PowerTools development toolsuite - a separate installer for modelling your

DDS infrastucture and generating the DDS code, increasing productivity by up to
ten times.

2.2 Key Features
• OpenSplice DDS is the most complete second generation OMG DDS

implementation that supports all DCPS profiles.
• OpenSplice DDS is proven in the field for a decade of deployment in mission

critical environments.
• Targets both real-time embedded and large-scale fault-tolerant systems.
• Highly optimised implementation from DDS users for DDS users.
• Total lifecycle support from prototyping through to remote maintenance.
11
 About OpenSplice DDS�������	

 2.3 Language and Compiler Bindings

• OpenSplice DDS supports both Single Process and Shared Memory architectures,
covering both ease of use and advanced optimal performance scenarios.

2.3 Language and Compiler Bindings
The OpenSplice DDS DCPS API is available for the following languages:

 - C
 - C++ (including OMG’s latest ISO-C++ API)
 - C#
 - Java

With OpenSplice DDS, there is also the ability to use the DDS and DCPS APIs
using a CORBA cohabitation mode. Cohabitation allows you to use objects in both
DCPS and CORBA without copying them from one representation to the other. This
means that CORBA objects can be published directly in DCPS and the other way
around. There is no difference in the DDS API, only in the generated code produced
by the idlpp tool in the development process. OpenSplice DDS has CORBA
cohabitation for C++ and Java, using (by default) OpenFusion TAO and
OpenFusion JacORB. Other variations are available, please check the Release Notes
for full platform and language ORB coverage.
The full range of language bindings available is:
• C (Standalone only) - sac
• C++ (Standalone and CORBA Cohabitation) - isocpp / sacpp / ccpp
• C# (Standalone only) - sacs
• Java (Standalone and CORBA Cohabitation) - saj / cj
OpenSplice DDS is delivered with a preset compiler for C++. Details of this can be
found in the Release Notes.
These compilers are the officially-supported set, but we have experience of
customers who will use the delivered libraries with slight variants of the compiler.
In most cases this works, but PrismTech has provided the source code so that
customers can rebuild the C++ APIs for their compiler of choice.

NOTE: PrismTech provides support on the officially-supported platforms due to
difficult-to-fix issues with compiler-generated code, but some customers will fund
us to qualify OpenSplice on their platform. If you wish to use a variant of an official
platform, then as long as the issue can be recreated on the official platform it will be
covered under an OpenSplice DDS support contract. If you wish to request support
o n a s p e c i f i c p l a t f o r m t h e n p l e a s e c o n t a c t P r i s m Te c h
(http://www.prismtech.com/contact-us)
12
About OpenSplice DDS

�������	

 2.3 Language and Compiler Bindings

2.3.1 Building your own C++ and CORBA APIs

2.3.1.1 Building your own ISO C++ API
The OpenSplice DDS DCPS API for the ISO C++ language binding without
CORBA cohabitation is delivered using a specific compiler.
To be able to use a different compiler with the OpenSplice DDS ISO C++ API, we
deliver the source code for this language with the OpenSplice DDS distribution.
This is contained in a directory <OpenSplice DDS Installation
directory>/custom_lib/isocpp along with a README file describing how to
generate the custom library.

2.3.1.2 Building your own Standalone C++ API
The OpenSplice DDS DCPS API for the C++ language binding without CORBA
cohabitation is delivered using a specific compiler.
To be able to use a different compiler with the OpenSplice DDS Standalone C++
API, we deliver the source code for this language with the OpenSplice DDS
distribution. This is contained in a directory <OpenSplice DDS Installation
directory>/custom_lib/sacpp along with a README file describing how to
generate the custom library.

2.3.1.3 Building your own CORBA C++ API
The OpenSplice DDS DCPS API for the C++ language binding with CORBA
cohabitation is delivered using the OpenFusion TAO ORB and a specific compiler.
The ORB ‘Ope nFus io n TAO’ can be o b t a ine d f rom P r i smTec h
(http://www.prismtech.com).
The d i r ec to ry <OpenSplice DDS Installation
directory>/custom_lib/ccpp contains the source code for building your own
CORBA C++ API library for an ORB and a compiler of your choice. This directory
also contains a README file, which describes how to generate this custom library.

2.3.1.4 Building your own CORBA Java API
The OpenSplice DDS DCPS API for the Java language binding with CORBA
cohabitation is built with OpenFusion JacORB. The ORB ‘OpenFusion JacORB’
can be obtained from PrismTech (http://www.prismtech.com).
The OpenSplice DDS CORBA Java API can also be rebuilt against another
CORBA-compliant Java ORB. The directory <OpenSplice DDS Installation
directory>/custom_lib/cj contains the necessary source code, along with a
README file which describes how to generate the custom library.
13
About OpenSplice DDS�������	

 2.4 Platforms

2.4 Platforms
The platforms supported by OpenSplice DDS are listed in the Release Notes.
Please refer to Platform-specific Information (page 33 onwards) for information
about using OpenSplice DDS on specific platforms.
14
About OpenSplice DDS

�������	

USING

OPENSPLICE DDS

CHAPTER

3 Documentation
The OpenSplice DDS documentation set provides detailed information about
OpenSplice DDS, including its API, usage, installation and configuration.
The following table lists all of the documentation and manuals included with
OpenSplice DDS. The table includes brief descriptions of the documents and their
likely users.

OpenSplice DDS Documentation Set

Document Description and Use
Release Notes Lists the latest updates, bug fixes, and

last-minute information.
For product installers, administrators, and
developers, who need to be aware of the latest
changes which may affect the Service’s
performance and usage.
A link to the Release Notes is in index.html
located in the directory where OpenSplice is
installed.

Getting Started Guide General information about OpenSplice,
including installation instructions, initial
configuration requirements and instructions
for running the OpenSplice examples on
supported platforms.
For managers, administrators, and developers
to gain an initial understanding of the product,
as well as for product installers for installing
and administering OpenSplice.

Getting Started Guide Essential reading for users new to DDS.
Tutorial Guide A short course on developing applications

with OpenSplice. Includes example code in C,
C++ and Java.

Deployment Guide A complete reference on how to configure and
tune the OpenSplice service.
17
 Using OpenSplice DDS�������	

Tuner Guide Describes how to use the Tuner tool for
monitoring and controlling OpenSplice.
For programmers, testers, system designers
and system integrators using OpenSplice.

IDL Pre-processor Guide Describes how to use the OpenSplice IDL
pre-processor for C, C++ and Java.

RMI over DDS Getting Started
Guide

Explains how to take advantage of the
client/server interaction paradigm provided by
OpenSplice RMI layered over the
publish/subscribe paradigm of
OpenSplice DDS.

OpenSplice Automated Testing and
Debugging Tool User Guide

Provides a complete reference on how to
configure the tool and use it to test waveforms
generated with the OpenSplice DDS.

C Reference Guide
C++ Reference Guide
Java Reference Guide

Each of these reference guides describes the
OpenSplice DDS Application Programmers
Interface (API) for C, C++ and Java.
This is a detailed reference for developers to
help them to understand the particulars of each
feature of the OpenSplice DDS API.

C# Reference Guide Describes the OpenSplice DDS API for C#.
Supplied as HTML rather than PDF and found
in the product Release Notes.

Examples Examples, complete with source code,
demonstrating how applications using
OpenSplice can be written and used.
Documentation for the examples can be found
in the OpenSplice Release Notes.

White Papers and Data Sheets Technical papers providing information about
OpenSplice DDS.
These technical papers are in Adobe Acrobat
PDF™ format and can be obtained from the
PrismTech web site at:
http://www.prismtech.com

OpenSplice DDS Documentation Set (Continued)

Document Description and Use
18
Using OpenSplice DDS

�������	

http://www.prismtech.com

CHAPTER

4 Information Sources
4.1 Product Information

Links to useful technical information for PrismTech’s products, including the
OpenSplice DDS and associated components, are listed below.

These links are provided for the reader’s convenience and may become out-of-date
if changes are made on the PrismTech Web site after publication of this guide.
Nonetheless, these links should still be reachable from the main PrismTech Web
page located at http://www.prismtech.com.

4.1.1 Knowledge Base
The PrismTech Knowledge Base is a collection of documents and resources
intended to assist our customers in getting the most out of the OpenSplice products.
The Knowledge Base has the most up-to-date information about bug fixes, product
issues and technical support for difficulties that you may experience. The
Knowledge Base can be found at:

http://www.prismtech.com/knowledge-base

4.1.2 Additional Technical Information
Information provided by independent publishers, newsgroups, web sites, and
organisations, such as the Object Management Group, can be found on the
Prismtech Web site:

http://www.prismtech.com

4.2 Support
PrismTech provides a range of product support, consultancy and educational
programmes to help you from product evaluation and development, through to
deployment of applications using OpenSplice DDS. The support programmes are
designed to meet customers’ particular needs and range from a basic Standard
programme to the Gold programme, which provides comprehensive, 24 x 7 support.
Detailed information about PrismTech’s product support services, general support
contacts and enquiries are described on the PrismTech Support page reached via the
PrismTech Home page at http://www.prismtech.com.
19
 Using OpenSplice DDS�������	

http://www.prismtech.com
http://www.prismtech.com
http://www.prismtech.com

 4.2 Support

20
Using OpenSplice DDS

�������	

INSTALLATION AND

CONFIGURATION

CHAPTER

5 Installation and Configuration
Follow the instructions in this chapter to install and configure OpenSplice DDS and
its tools. Information on running the OpenSplice examples are provided at the end
of the chapter under Section 5.5, Examples.

5.1 OpenSplice DDS Development and Run-Time
OpenSplice DDS is provided in two installers. The HDE (Host Development
Environment) is the standard and it requires approximately 60 Mb of disk space
after installation; the RTS (Run Time System) requires approximately 35 Mb of disk
space.
The HDE contains all of the services, libraries, header files and tools needed to
develop applications using OpenSplice, and the RTS is a subset of the HDE which
contains all of the services, libraries and tools needed to deploy applications using
OpenSplice.

5.2 Installation for UNIX and Windows Platforms
Step 1: Install OpenSplice DDS by running the installation wizard for your particular

installation, using:
OpenSpliceDDS<version>-<platform>.<os>-<E>-installer.<ext>

where
<version> - the OpenSplice DDS version number, for example V5.0
<platform> - the platform architecture, for example sparc or x86
<os> - the operating system, for example solaris8 or linux2.6
<E> - the environment, either HDE or RTS
<ext> - the platform executable extension, either bin or exe
The directories in the OpenSplice DDS distribution are named after the
installation package they contain. Each package consists of an archive and its
installation procedure.

Step 2: Configure the OpenSplice DDS environment variables (this is only necessary on
UNIX, as the Windows environment is configured by the OpenSplice installer)
1. Go to the <install_dir>/<E>/<platform> directory, where <E> is HDE

or RTS and <platform> is, for example, x86.linux2.6.
2. Source the release.com file from the shell command line.

UNIX

UNIX
23
 Installation and Configuration�������	

 5.3 Installation on Other Platforms

This step performs all the required environment configuration.
Step 3: Install your desired ORB when the C++ language mapping is used with CORBA

cohabitation. Ensure your chosen ORB and compiler is appropriate for the CCPP
library being used (either OpenSplice’s default library or other custom-built library).
Refer to the Release Notes for ORB and compiler information pertaining to
OpenSplice DDS’ default CCPP library.

5.3 Installation on Other Platforms
Please refer to Platform-specific Information (page 33 onwards) for information
about using OpenSplice DDS on specific platforms.

5.4 Configuration
OpenSplice DDS is configured using an XML configuration file, as shown under
XML Configuration Settings on page 26. It is advisable to use the osplconf tool
(UNIX) or OpenSplice DDS Configurator Tool (Windows Start Menu) to edit your
xml files. The configurator tool provides explanations of each attribute and also
validates the input.
The default configuration file is ospl.xml located in $OSPL_HOME/etc/config
(alternative configuration files may also be available in this directory, to assist in
other scenarios). The default value of the environment variable OSPL_URI is set to
this configuration file.
The configuration file defines and configures the following OpenSplice services:
• spliced - the default service, also called the domain service; the domain service

is responsible for starting and monitoring all other services
• durability - responsible for storing non-volatile data and keeping it consistent

within the domain (optional)
• networking - realizes user-configured communication between the nodes in a

domain
• tuner - provides a SOAP interface for the OpenSplice Tuner to connect to the

node remotely from any other reachable node
The default deployment specified by the XML configuration file is for a Single
Process deployment. This means that the OpenSplice Domain Service, database
administration and associated services are all started within the DDS application
process. This is implicitly done when the user’s application invokes the DDS
create_participant operation.
The deployment mode and other configurable properties can be changed by using a
different OSPL_URI file. Several sample configuration files are provided at the same
location.
24
Installation and Configuration

�������	

 5.4 Configuration

If using a shared memory configuration, a <Database> attribute is specified in the
XML configuration. The default Database Size that is mapped on a shared memory
segment is 10 Megabytes
NOTE: The maximum user-creatable shared-memory segment is limited on certain
machines, including Solaris, so it must either be adjusted or OpenSplice must be
started as root.
A complete configuration file that enables durability as well as networking is shown
below. (The parts shown in bold are not enabled in the default configuration file, but
editing them will allow you to enable support for PERSISTENT data (instead of just
TRANSIENT or VOLATILE data) and to use multicast instead of broadcast.)
Adding support for PERSISTENT data requires you to add the <Persistent>
element to the <DurabilityService> content (see the bold lines in the XML
example shown below). In this <Persistent> element you can then specify the
actual path to the directory for persistent-data storage (if it does not exist, the
directory will be created). In the example below this directory is /tmp/Pdata.
For the networking service, the network interface-address that is to be used is
specified by the <NetworkInterfaceAddress> element. The default value is set
to first available, meaning that OpenSplice will determine the first available
interface that is broadcast or multicast enabled. However, an alternative address
may be specified as well (specify as a.b.c.d).
The network service may use separate channels, each with their own name and their
own parameters (for example the port-number, the queue size, and, if multicast
enabled, the multicast address). Channels are either reliable (all data flowing
through them is delivered reliably on the network level, regardless of QoS settings
of the corresponding writers) or not reliable (all data flowing through them is
delivered at most once, regardless of QoS settings of the corresponding writers).
The idea its that the network service chooses the most appropriate channel for each
DataWriter, i.e. the channel that fits its QoS settings the best.
Usually, networking shall be configured to support at least one reliable and one
non-reliable channel. Otherwise, the service might not be capable of offering the
requested reliability. If the service is not capable of selecting a correct channel, the
message is sent through the “default” channel. The example configuration defines
both a reliable and a non-reliable channel.
The current configuration uses broadcast as the networking distribution mechanism.
This is achieved by setting the Address attribute in the GlobalPartition
element to broadcast, which happens to be the default value anyway. This Address
attribute can be set to any multicast address in the notation a.b.c.d in order to use
multicast.
25
Installation and Configuration�������	

 5.4 Configuration

If multicast is required to be used instead of broadcast, then the operating system’s
multicast routing capabilities must be configured correctly.
See the OpenSplice DDS Deployment Manual for more advanced configuration
settings.

Example XML Configuration Settings

<OpenSpliceDDS>
 <Domain>
 <Name>OpenSpliceDDSV3.3</Name>
 <Database>
 <Size>10485670</Size>
 </Database>
 <Lease>
 <ExpiryTime update_factor=”0.05”>60.0</ExpiryTime>
 </Lease>
 <Service name="networking">
 <Command>networking</Command>
 </Service>
 <Service name="durability">
 <Command>durability</Command>
 </Service>
 </Domain>
 <NetworkService name="networking">
 <General>
 <NetworkInterfaceAddress>
 first available
 </NetworkInterfaceAddress>
 </General>
 <Partitioning>
 <GlobalPartition Address="broadcast"/>
 </Partitioning>
 <Channels>
 <Channel name="BestEffort" reliable="false"
 default="true">
 <PortNr>3340</PortNr>
 </Channel>
 <Channel name="Reliable" reliable="true">
 <PortNr>3350</PortNr>
 </Channel>
 </Channels>
 </NetworkService>
 <DurabilityService name="durability">
 <Network>
 <InitialDiscoveryPeriod>2.0</InitialDiscoveryPeriod>
 <Alignment>
 <RequestCombinePeriod>
 <Initial>2.5</Initial>
 <Operational>0.1</Operational>
 </RequestCombinePeriod>
 </Alignment>
 <WaitForAttachment maxWaitCount="10">
 <ServiceName>networking</ServiceName>
 </WaitForAttachment>
 </Network>
 <NameSpaces>
26
Installation and Configuration

�������	

 5.5 Examples

5.5 Examples
A great way to get started with OpenSplice DDS is to try running the examples
provided with the product. There are many examples in different languages and
some with the CORBA cohabitation, showing different aspects of the DCPS API.
To give you a feel for how powerful DDS is then we recommend trying PingPong
and the Tutorial.
The way to build and run the examples is dependent on the Platform you are using.
Each example has HTML documentation explaining how to build and run it on
Unix/Linux and Windows systems. This can be found in the OpenSplice DDS
documentation.
For VxWorks and Integrity, please refer to Chapter 7, VxWorks 5.5.1, on page 35,
Chapter 8, VxWorks 6.x RTP, on page 43, and Chapter 10, Integrity, on page 59 in
this Guide.

5.5.1 Using the OpenSplice Tools

NOTE: The following instructions apply only to the shared memory deployment of
OpenSplice DDS. When deploying in single process configuration, there is no need
to manually start the OpenSplice infrastructure prior to running a DDS application
process, as the administration will be created within the application process. Please
refer to the OpenSplice Deployment Guide for a discussion of these deployment
architectures.

The OpenSplice infrastructure can be stopped and started from the Windows Start
Menu, as well as the Tuner and Configurator.

Step 1: Manually start the OpenSplice infrastructure
1. Enter ospl start on the command line.1 This starts the OpenSplice services.
2. These log files may be created in the current directory when OpenSplice is

started:
a) ospl-info.log - contains information and warning reports

 <NameSpace durabilityKind="Durable"
 alignmentKind="Initial_and_Aligner">
 <Partition>*</Partition>
 </NameSpace>
 </NameSpaces>
 <Persistent>
 <StoreDirectory>/tmp/Pdata</StoreDirectory>
 </Persistent>
 </DurabilityService>
</OpenSplice>

1. ospl is the command executable for OpenSplice DDS.

27

Installation and Configuration�������	

 5.5 Examples

b) ospl-error.log - contains error reports
If OpenSplice DDS is used as a Windows Service then the log files are
re-directed to the path specified by OSPL_LOGPATH. (Use the set command in
the OpenSplice DDS command prompt to see the OSPL_LOGPATH value.)

Step 2: Start the OpenSplice Tuner Tool
1. Read the OpenSplice Tuner Guide (TurnerGuide.pdf) before running the

Tuner Tool
2. Start the tool by entering ospltun on the command line.

The URI required to connect is set in the OSPL_URI environment variable
(default URI is: file://$OSPL_HOME/etc/config/ospl.xml).

3. The OpenSplice system can now be monitored.
Step 3: Experiment with the OpenSplice tools and applications

1. Use the OpenSplice Tuner to monitor all DDS entities and their (dynamic)
relationships

Step 4: Manually stop the OpenSplice infrastructure
1. Choose File > Disconnect from the OpenSplice Tuner menu.
2. Enter ospl stop on the command line: this stops all OpenSplice services.

i

28
Installation and Configuration

�������	

CHAPTER

6 Licensing OpenSplice
6.1 General

OpenSplice DDS uses Reprise License Manager (RLM) to manage licenses. This
section describes how to install a license file for OpenSplice DDS and how to use
the license manager.
The licensing software is automatically installed on the host machine as part of the
OpenSplice distribution. The software consists of two parts:
• OpenSplice DDS binary files, which are installed in
<OpenSplice_Install_Dir>/<E>/<platform>.<os>/bin, where
OpenSplice_Install_Dir is the directory where OpenSplice DDS is installed

• License files which determine the terms of the license. These will be supplied by
PrismTech.

Licenses: PrismTech supplies an OpenSplice DDS license file, license.lic. This
file is not included in the software distribution, but is sent separately by PrismTech.

6.1.1 Development and Deployment Licenses
Development licenses are on a per Single Named Developer basis. This implies that
each developer using the product requires a license. OpenSplice DDS is physically
licensed for development purposes. OpenSplice DDS is also physically licensed on
enterprise platforms for deployment.
Some OpenSplice components are licensed individually and you will need the
correct feature to be unlocked for you to use them.

6.2 Installing the License File
Copy the license file to <OpenSplice_Install_Dir>/etc/license.lic,
where <OpenSplice_Install_Dir> is the directory where OpenSplice is
installed, on the machine that will run the license manager.
This is the recommended location for the license file but you can put the file in any
location that can be accessed by the license manager rlm.

i

29
 Installation and Configuration�������	

 6.3 Running the License Manager Daemon

If another location is used or the environment has not been setup, then an
environment variable, either RLM_LICENSE or prismtech_LICENSE, must be set
to the full path and filename of the license file (either variable can be set; there is no
need to set both). For example:

prismtech_LICENSE=/my/lic/dir/license.lic

If licenses are distributed between multiple license files, the RLM_LICENSE or
prismtech_LICENSE variable can be set to point to the directory which contains
the license files.

6.3 Running the License Manager Daemon
It is only necessary to run the License Manager Daemon for floating or counted
licenses. In this case, the license manager must be running before OpenSplice DDS
can be used. The license manager software is responsible for allocating licenses to
developers and ensuring that the allowed number of concurrent licenses is not
exceeded.
For node-locked licenses, as is the case with all evaluation licenses, then it is not
necessary to run the License Manager Daemon but the RLM_LICENSE or
prismtech_LICENSE variable must be set to the correct license file location.
To run the license manager, use the following command:

where <location> is the full path and filename of the license file. If licenses are
distributed between multiple files, <location> should be the path to the directory
that contains the license files.
The rlm command will start the PrismTech vendor daemon prismtech, which
controls the licensing of the OpenSplice DDS software.
To obtain a license for OpenSplice DDS from a License Manager Daemon that is
r u n n i n g o n a d i f f e r e n t m a c h i n e , s e t e i t h e r t h e RLM_LICENSE o r
prismtech_LICENSE environment variable to point to the License Manager
Daemon, using the following syntax:

where <port> is the port the daemon is running on and <host> is the host the
daemon is running on.
The port and host values can be obtained from the information output when the
daemon is started. The format of this output is as shown in the following example:

07/05 12:05 (rlm) License server started on rhel4e

% rlm -c <location>

% RLM_LICENSE=<port>@<host>
30
Installation and Configuration

�������	

 6.3 Running the License Manager Daemon

07/05 12:05 (rlm) Server architecture: x86_l2
07/05 12:05 (rlm) License files:
07/05 12:05 (rlm) license.lic
07/05 12:05 (rlm)
07/05 12:05 (rlm) Web server starting on port 5054
07/05 12:05 (rlm) Using TCP/IP port 5053
07/05 12:05 (rlm) Starting ISV servers:
07/05 12:05 (rlm) ... prismtech on port 35562
07/05 12:05 (prismtech) RLM License Server Version 9.1BL3 for ISV
"prismtech"
07/05 12:05 (prismtech) Server architecture: x86_l2

 Copyright (C) 2006-2011, Reprise Software, Inc. All rights reserved.

 RLM contains software developed by the OpenSSL Project
 for use in the OpenSSL Toolkit (http//www.openssl.org)
 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
 Copyright (c) 1995-1998 Eric Young (eay@cryptsoft.com) All rights
reserved.

07/05 12:05 (prismtech)
07/05 12:05 (prismtech) Server started on rhel4e (hostid: 0025643ad2a7)
for:
07/05 12:05 (prismtech) opensplice_product1 opensplice_product2
07/05 12:05 (prismtech)
07/05 12:05 (prismtech) License files:
07/05 12:05 (prismtech) license.lic
07/05 12:05 (prismtech)

The <port> value should be taken from the first line of the output. The <server>
value should be taken from the last line. From this example, the value for
RLM_LICENSE or prismtech_LICENSE would be:

35562@rhel4e

6.3.1 Utilities
A utility program, rlmutil, is available for license server management and
administration. One feature of this utility is its ability to gracefully shut down the
license manager. To shut down the license manager, preventing the checkout of
licenses for the OpenSplice DDS software, run either of the following commands:

where <location> is the full path and filename of the license file.
The rlmutil program is also used to generate a host identification code which is
used to generate your license key. To generate the code, run the following command
on the license server:

% rlmutil rlmdown -vendor prismtech

% rlmutil rlmdown -c <location>
31
Installation and Configuration�������	

 6.3 Running the License Manager Daemon

This returns an ID code for the server, which will look similar to:
Hostid of this machine: 0025643ad2a7

This ID code must be supplied to PrismTech so that your license key can be
generated.

% rlmutil rlmhostid
32
Installation and Configuration

�������	

PLATFORM-SPECIFIC

INFORMATION

CHAPTER

7 VxWorks 5.5.1
This chapter provides a brief description of how to build the kernel and the supplied
examples, and how to run those examples, using VxWorks 5.5.1 and the Tornado
‘front end’. For more information about VxWorks 5.5.1 and Tornado, please refer to
WindRiver’s documentation.
NOTE: The examples given here assume that a Solaris-hosted system is being used,
and that OpenSplice DDS is installed in /usr/local/vxworks5.5.1.

7.1 Building a VxWorks Kernel
Required modules
The following modules are the core system components needed to build the
OpenSplice DDS runtime. Please refer to WindRiver’s documentation for additional
information describing how VxWorks kernels can be built.

Operating system components
• POSIX components

 - POSIX timers
 - POSIX threads

• File System and Disk Utilities
 - File System and Disk Utilities

Additional modules
The modules listed below are optional but are useful for HDE (Host Development
Environment) development. These modules are required if deploying from the
Tornado front end:

Development tool components
• WDB agent components

 - WDB agent services
• WDB target server file system

 - symbol table components
35
 Platform-specific Information�������	

 7.2 Scenarios for Building the OpenSplice Examples

Platform-specific Information
• synchronize host and target symbol tabels
• target shell components

 - target shell

7.2 Scenarios for Building the OpenSplice Examples
There are two scenarios included for building and deploying the OpenSplice
examples.
• You can build one DKM containing the example, OpenSplice and all of its

required services and support libraries, as well as a default configuration file.
(This is the recommended approach).

• Alternatively, separate DKMs are supplied for each of the OpenSplice libraries
and services, and the examples can be built as a DKM containing only the
examples (we refer to this as the ‘AppOnly’ style).

7.2.1 The OpenSplice Examples (All linked in one complete DKM – recommended)

7.2.1.1 To build the standalone C PingPong example
At the prompt, cd to examples/dcps/PingPong/c/standalone/ and run
make.

7.2.1.2 Note about the example projects
The example builds by linking the object produced by compiling the output of
osplconf2c along with the example application, the splice deamon, and
services enabled in the configuration XML, into one single downloadable kernel
module.
Users producing their own application could of course decide to link the object and
library files into a monolithic kernel image instead.

7.2.1.3 The osplconf2c tool
osplconf2c is required for example and user applications.
osplconf2c is a tool which processes the OpenSplice configuration XML, and
produces a source file to be compiled and linked into the final image. It contains the
data from the XML file, as well as any environment variables that you require to
configure OpenSplice and references to the symbols for the entry points of the
OpenSplice services.
36
Platform-specific Information

�������	

 7.2 Scenarios for Building the OpenSplice Examples

Environment variables can be added using the -e option. For example, you would
use the option -e "OSPL_LOGPATH=/xxx/yyy" if you wanted the logs to be
placed in /xxx/yyy.
The example makefiles runs osplconf2c automatically.

7.2.1.4 Overriding OpenSplice configuration at runtime
You can override the OpenSplice configuration XML provided to osplconf2c at
runtime by specifying the URI of a file when starting ospl_spliced on the target.
For example:

ospl_spliced "file:///tgtsvr/ospl.xml"

It should be noted, however, that the osplconf2c will have generated references to
the symbols for the services which are specified in the xml file when it started, and
only those services may be used in the new configuration, as other services will not
be included in the image. As an exception to this, if the -d option is specified then
dynamic loading is supported, and DKMs for additional services will be
automatically loaded; DKMs for any required ‘libraries’ must be pre-loaded by the
user.
NOTE: Symbol table support will be required in the kernel if the -d option is used.
Without the -d option it should still be possible to statically link OpenSplice with a
kernel even if symbol table support is not included, for example for final
deployment.

7.2.1.5 Running the Examples
If you included the additional modules listed above (see Section 7.1, Building a
VxWorks Kernel, on page 35) in the kernel, deployment is done via the target server
setup from the Tornado shell connection.

7.2.1.6 Background
All OpenSplice DDS tools or services have unique entry points. These entry points
all take a string; the string is parsed into the necessary arguments and passed on.
To start ospl on a Unix system, the command would be:

ospl start file:///ospl.xml

and on VxWorks:
ospl "start file:///ospl.xml"

Note that the arguments are separated by spaces.
Other commands:

ospl -> ospl(char *)
spliced -> ospl_spliced(char *)
networking -> ospl_networking(char *)
37
Platform-specific Information�������	

 7.2 Scenarios for Building the OpenSplice Examples

durability -> ospl_durability(char *)
cmsoap -> ospl_cmsoap(char *)
mmstat -> ospl_mmstat(char *)
shmdump -> ospl_shmdump(char *)

The standard ‘main’ equivalent entry points are:
ospl -> ospl_unique_main(int argc, char ** argv)
spliced -> ospl_spliced_unique_main(int argc, char ** argv)
networking -> ospl_networking_unique_main(int argc, char ** argv)
durability -> ospl_durability_unique_main(int argc, char ** argv)
cmsoap -> ospl_cmsoap_unique_main(int argc, char ** argv)
mmstat -> ospl_mmstat_unique_main(int argc, char ** argv)
shmdump -> ospl_shmdump_unique_main(int argc, char ** argv)

You can use the standard argv argc version entry when you need to use arguments
with embedded spaces. For example, for ospl you would use:

osplArgs = malloc(12)
*osplArgs = "ospl"
*(osplArgs+4) = "start"
*(osplArgs+8) = "file:///tgtsvr/etc/config/ospl.xml"
ospl_unique_main (2, osplArgs)

7.2.1.7 How to start spliced and related services
For the example below the target server filesystem must be mounted as /tgtsvr on
the target.
To start the spliced service and other additional OpenSplice services open a
windsh and enter the following commands.

cd "$OSPL_HOME/examples/dcps/PingPong/c/standalone"
ld 1,0,"sac_pingpong_kernel.out"
ospl_spliced

Note that spliced will block when invoked by ospl_spliced so open a new
windsh to run the following Pong command:

pong ("PongRead PongWrite")

After the Pong application has started you can open another windsh and start Ping.
However, if you are running the Ping application on another target board you must
load and start spliced on that target also, as described above.

ping("100 100 m PongRead PongWrite")
ping("100 100 q PongRead PongWrite")
ping("100 100 s PongRead PongWrite")
ping("100 100 b PongRead PongWrite")
ping("100 100 f PongRead PongWrite")
ping("1 10 t PongRead PongWrite")
38
Platform-specific Information

�������	

 7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs)

The ospl-info.log file can be inspected to check the deployment has been
successful. By default, this is written to the /tgtsvr directory.
The moduleShow command can be used within the VxWorks shell to see that the
service modules have loaded, and the the ‘i’ command should show that tasks have
started for these services.

7.2.1.8 The osplconf2c command
Usage
osplconf2c -h

osplconf2c [-d [-x]] [-u <URI>] [-e <env=var>]... [-o <file>]

Description of options
-h, -? List available command line arguments and give brief reminders

of their functions.
-u <URI> Specifies the configuration file to use (default: ${OSPL_URI}).
-o <file> Name of the generated file.
-e <env=var> Environment setting for configuration of OpenSplice;

e.g. -e "OSPL_LOGPATH=/xxx/yyy".
-d Enable dynamic loading.
-x Exclude xml.

7.3 The OpenSplice Examples (Alternative scenario, with multiple
DKMs)

Loading separate DKMs is not recommended by PrismTech.

Note about the example projects
Please ensure that any services called by a configuration XML contain an explicit
path reference within the command tag; for example:

<Command>/tgtsvr/networking</Command>

7.3.1 To build the standalone C pingpong example
At the prompt, cd to examples/dcps/PingPong/c/standalone/ and run

make -f Makefile_AppOnly
39
Platform-specific Information�������	

 7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs)

7.3.2 How to start spliced and related services
To start the spliced service and other additional OpenSplice services, load the
core OpenSplice shared library that is needed by all OpenSplice DDS applications,
and then the ospl utility symbols. This can be done using a VxWorks shell on as
many boards as needed. The ospl entry point can then be invoked to start
OpenSplice.

cd "$OSPL_HOME"
ld 1,0,"lib/libddscore.so"
ld 1,0,"bin/ospl"
os_putenv("OSPL_URI=file:///tgtsvr/etc/config/ospl.xml")
ospl("start")

Please note that in order to deploy the cmsoap service for use with the OpenSplice
DDS Tuner, it must be configured in ospl.xml and the libraries named
libcmxml.so and libddsrrstorage.so must be pre-loaded:

ld 1,0,"lib/libddscore.so"
ld 1,0,"lib/libddsrrstorage.so"
ld 1,0,"lib/libcmxml.so"
ld 1,0,"bin/ospl"
os_putenv("OSPL_URI=file:///tgtsvr/etc/config/ospl.xml")
os_putenv("PATH=/tgtsvr/bin")
ospl("start")

7.3.3 To run the C PingPong example from winsh
After the spliced and related services have started, you can start Pong:

cd "$OSPL_HOME"
ld 1,0,"lib/libdcpsgapi.so"
ld 1,0,"lib/libdcpssac.so"
cd "examples/dcps/PingPong/c/standalone"
ld 1,0,"sac_pingpong_kernel_app_only.out"
pong("PongRead PongWrite")

After the Pong application has started you can open another windsh and start Ping.
However, if you are running the Ping application on another target board you must
load and start spliced on that target also, as described above.

ping("100 100 m PongRead PongWrite")
ping("100 100 q PongRead PongWrite")
ping("100 100 s PongRead PongWrite")
ping("100 100 b PongRead PongWrite")
ping("100 100 f PongRead PongWrite")
ping("1 10 t PongRead PongWrite")

The ospl-info.log file can be inspected to check the deployment has been
successful. By default, this is written to the /tgtsvr directory.
40
Platform-specific Information

�������	

 7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs)

The moduleShow command can be used within the VxWorks shell to see that the
service modules have loaded, and the the ‘i’ command should show that tasks have
started for these services.

7.3.4 Load-time Optimisation: pre-loading OpenSplice Service Symbols
Loading spliced and its services may take some time if done exactly as described
above. This is because the service Downloadable Kernel Modules (DKM) and entry
points are dynamically loaded as required by OpenSplice.
It has been noted that the deployment may be slower when the symbols are
dynamically loaded from the Target Server File System. However, it is possible to
improve deployment times by optionally pre-loading service symbols that are
known to be deployed by OpenSplice.
In this case OpenSplice will attempt to locate the entry point symbols for the
services and invoke those that are already available. This removes the need for the
dynamic loading of such symbols and can equate to a quicker deployment. When
the entry point symbols are not yet available (i.e. services have not been
pre-loaded), OpenSplice will dynamically load the services as usual.
For example, for an OpenSplice system that will deploy spliced with the
networking and durability services, the following commands could be used:

cd "$OSPL_HOME"
ld 1,0,"lib/libddscore.so"
ld 1,0,"bin/ospl"
ld 1,0,"bin/spliced"
ld 1,0,"bin/networking"
ld 1,0,"bin/durability"
os_putenv("OSPL_URI=file:///tgtsvr/etc/config/ospl.xml")
os_putenv("PATH=/tgtsvr/bin")
ospl("start")

The ospl-info.log file describes whether entry point symbols are resolved
having been pre-loaded, or the usual dynamic symbol loading is required.

7.3.5 Notes
In this scenario osplcon2c has been used with the -x and -d options to create an
empty configuraion which allows dynamic loading, and the resulting object has
been included in the provided libddsos.so.
If desired the end user could create a new libddsos.so based on libddsos.a
and a generated file from osplconf2c without the -x option, in order to statically
link some services but also allow dynamic loading of others if the built-in xml is
later overridden with a file URI. (See Section 7.2.1.4, Overriding OpenSplice
configuration at runtime, on page 37.)
41
Platform-specific Information�������	

 7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs)

42
Platform-specific Information

�������	

CHAPTER

8 VxWorks 6.x RTP
OpenSplice DDS is deployed on the VxWorks 6.x operating system as Real Time
Processes (RTPs). For more information about RTPs please refer to WindRiver’s
VxWorks documentation.

8.1 Installation
The following instructions describe installing OpenSplice DDS for VxWorks 6.x on
the Windows host environment.
Start the installation process by double-clicking the OpenSplice DDS Host
Development Environment (HDE) installer file. Follow the on-screen instructions
and complete the installation. When asked to configure the installation with a
license file, select No. The installer will create an OpenSplice DDS entry in Start >
Programs which contains links to the OpenSplice tools, documentation, and an
Uninstall option.
Please note that WindRiver’s Workbench GUI must be run in an environment where
the OpenSplice variables have already been set. If you chose to set the OpenSplice
variables globally during the installation stage, then Workbench can be run directly.
Otherwise, Workbench must be run from the OpenSplice DDS command prompt.
Start the command prompt by clicking Start > Programs > OpenSpliceDDS menu
entry > OpenSpliceDDS command prompt, then start the Workbench GUI. On
VxWorks 6.6 the executable is located at

<WindRiver root directory>\workbench-3.0\wrwb\platform\
eclipse\wrwb-x86-win32.exe

This executable can be found by right-clicking on the WindRiver’s Workbench Start
menu item and selecting Properties.

8.2 VxWorks Kernel Requirements
The VxWorks kernel required to support OpenSplice DDS on VxWorks 6.x is built
using the development kernel configuration profile with the additional posix thread
components enabled. A kernel based on this requirement can be built within
Workbench, by starting the Workbench GUI and selecting File > New > VxWorks
Image Project.

WIN
43
 Platform-specific Information�������	

 8.3 Deploying OpenSplice DDS

Type a name for the project then select the appropriate Board Support Package and
Tool Chain (for example mcpn805 and gnu). Leave the kernel options to be used as
blank, and on the Configuration Profile dialog select PROFILE_DEVELOPMENT
from the drop-down list.
Once the kernel configuration project has been generated, the additional required
functionality can be enabled:
• POSIX threads (INCLUDE_POSIX_PTHREADS)
• POSIX thread scheduler in RTPs (INCLUDE_POSIX_PTHREAD_SCHEDULER)
• built-in symbol table (INCLUDE_STANDALONE_SYM_TBL)
Note that the Workbench GUI should be used to enable these components so that
dependent components are automatically added to the project.

8.3 Deploying OpenSplice DDS
As described in Section 5.4, Configuration, OpenSplice DDS is started with the
OpenSplice domain service spliced and a number of optional services described
within the OpenSplice configuration file (ospl.xml). On VxWorks 6.x, a Real
Time Process for each of these services is deployed on to the target hardware. The
sample ospl.xml configuration file provided with the VxWorks 6.x edition of
OpenSplice has particular settings so that these RTPs can operate effectively.
The instructions below describe how to deploy these RTPs using the Workbench
GUI and the Target Server File System (TSFS), although the processes can be
deployed by using commands and other file system types.

Step 1: Start the Workbench and create a connection to the target hardware using the
Remote Systems view.

Step 2: Create a connection to the host machine. In the Properties for the connection, make
part of the host’s file system available to VxWorks using the TSFS by specifying
both the -R and -RW options to tgtsvr. For example, connecting with the option
-R c:\x -RW will enable read and write access to the contents of the c:\x
directory from the target hardware under the mount name /tgtsvr.

Step 3: Activate the new connection by selecting it and clicking Connect.
Step 4: With a connection to the target hardware established, create a new RTP deployment

configuration for the connection by right-clicking on the connection and selecting
Run > Run RTP on Target....

Step 5: Create a new configuration for the spliced deployment that points to the
spliced.vxe executable from the OpenSplice installation. The following
parameters should be set in the dialog:
44
Platform-specific Information

�������	

 8.3 Deploying OpenSplice DDS

RTP configuration for spliced.vxe

For simplicity it has been assumed that spliced.vxe and the other executables
(located in the bin directory of the installation) and ospl.xml (located in the
etc/config directory of the installation) have been copied to the directory made
available as /tgtsvr described above. It is possible, if required, to copy the entire
OpenSplice installation directory to the /tgtsvr location so that all files are
available, but please be aware that log and information files will be written to the
same /tgtsvr location when the spliced.vxe is deployed.
The screen shot from Workbench in Figure 3 shows this configuration.

Figure 3 Workbench showing spliced deployment configuration
The configuration can be deployed by clicking Run, where an RTP for each service
described in the configuration file should be created. These can be seen in
Workbench in the Real Time Processes list for the target connection. An example is
shown below in Figure 4. (The list may need to be refreshed with the F5 key.)

Exec Path
on Target

/tgtsvr/spliced.vxe

Arguments file:///tgtsvr/ospl.xml

Environ-
ment

LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml
PATH=/tgtsvr

Priority 100

Stack Size 0x10000
45
Platform-specific Information�������	

 8.4 OpenSplice Examples

Deployment problems are listed in ospl-error.txt and ospl-info.txt, which
are created in the /tgtsvr directory if the configuration described above is used.

Figure 4 Workbench showing deployed OpenSplice RTPs

8.4 OpenSplice Examples
PrismTech provides a number of examples both for C and C++ that are described in
Section 5.5, Examples, on page 27. These example are provided in the form of
Workbench projects which can be easily built and then deployed on to the target
hardware in a similar process to that described above.
Each project contains a README file briefly explaining the example and the
parameters required to run it.

8.4.1 Importing Example Projects into Workbench
The example projects can be imported into Workbench by clicking File > Import... >
General > Existing Projects into Workspace.
In the Import Projects dialog, browse to the examples directory of the OpenSplice
installation. Select the required projects for importing from the list that Workbench
has detected.
Ensure that the Copy projects into workspace box is un-checked.

8.4.2 Building Example Projects with Workbench
Projects in a workspace can be built individually or as a group.
Build a single project by selecting it and then click Project > Build Project.
Build all projects in the current workspace by clicking Project > Build All.
46
Platform-specific Information

�������	

 8.4 OpenSplice Examples

8.4.3 Deploying OpenSplice Examples
The PingPong and the Tutorial examples are run in identical ways with the same
parameters for both C and C++. These should be deployed onto the VxWorks target
with the arguments described in the README files for each project.

8.4.3.1 Deploying PingPong
The PingPong example consists of the ping.vxe and pong.vxe executables. If
these executables have been copied to the directory made available as /tgtsvr as
described in Section 8.3, Deploying OpenSplice DDS, RTP configurations should
have the following parameters:

RTP configuration for pong

RTP configuration for ping

When deployment is successful, the console shows output from both the ping and
pong executables. The console view can be switched to show the output for each
process by clicking the Display Selected Console button.

8.4.3.2 Deploying the Chat Tutorial
The Chat Tutorial consists of the chatter.vxe, messageboard.vxe and
userload.vxe executables. If these executables have been copied to the directory
made available as /tgtsvr as described in Section 8.3, Deploying OpenSplice
DDS, RTP configurations should have the following parameters:

Exec Path on
Target

/tgtsvr/pong.vxe

Arguments PongRead PongWrite

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/ping.vxe

Arguments 10 10 s PongRead PongWrite

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000
47
Platform-specific Information�������	

 8.4 OpenSplice Examples

RTP configuration for userload

RTP configuration for messageboard

RTP configuration for chatter

When deployment is successful, the console will show output from each RTP. In
particular the message board will show the messages sent by the chatter process.
The console view can be switched to show the output for each process by clicking
the Display Selected Console button.

Exec Path on
Target

/tgtsvr/userload.vxe

Arguments
Environment LD_BIND_NOW=1

OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/messageboard.vxe

Arguments
Environment LD_BIND_NOW=1

OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/chatter.vxe

Arguments 1 User1

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000
48
Platform-specific Information

�������	

CHAPTER

9 VxWorks 6.x Kernel Mode
This chapter provides a brief description of how to build the kernel and the supplied
examples, and how to run those examples, using VxWorks 6.x kernel and the
Workbench ‘front end’. For more information about VxWorks 6.x, please refer to
WindRiver’s documentation.

9.1 VxWorks Kernel Requirements
The VxWorks kernel required to support OpenSplice DDS on VxWorks 6.x is built
using the development kernel configuration profile with the additional posix thread
components enabled. A kernel based on this requirement can be built within
Workbench, by starting the Workbench GUI and choosing File > New >
VxWorks Image Project.

9.2 Deploying OpenSplice DDS
Type a name for the project then select the appropriate Board Support Package and
Tool Chain (for example pcPentium4 and gnu). Leave all of the kernel options to
be used blank except for the SMP option, which must match the OpenSplice build
you are working with (i.e. it must be checked only for SMP builds of OpenSplice),
and on the Configuration Profile dialog choose PROFILE_DEVELOPMENT from
the drop-down list.
Once the kernel configuration project has been generated, the additional required
functionality can be enabled:
• POSIX threads (INCLUDE_POSIX_PTHREADS)
• built-in symbol table (INCLUDE_STANDALONE_SYM_TBL)
• synchronize host and target symbol tables
• target shell components

 - target shell
To successfully complete the C++ examples you will also require
• C++ components > standard library (FOLDER_CPLUS_STDLIB)
Note that the Workbench GUI should be used to enable these components so that
dependent components are automatically added to the project.
49
 Platform-specific Information�������	

 9.3 OpenSplice Examples

9.2.1 Special notes for this platform
If any kernel tasks which will call onto OpenSplice API’s are to be created before
ospl_spliced is started then the user must ensure that the function
os_procInstallHook (which takes no parameters) is called before they are
started. There only needs to be one call to os_procInstallHook; however,
mutiple calls are harmless.

9.3 OpenSplice Examples
PrismTech provides the pingpong example both for C and C++ that are described
in Section 5.5, Examples, on page 27. These example are provided in the form of
Workbench projects which can be easily built and then deployed on to the target
hardware in a similar process to that described above.
Each project contains a README file briefly explaining the example and the
parameters required to run it.

9.3.1 Importing Example Projects into Workbench
The example projects can be imported into Workbench by choosing File >
Import... > General > Existing Projects into Workspace.
In the Import Projects dialog, browse to the examples directory of the OpenSplice
installation. Select the required projects for importing from the list that Workbench
has detected.
Ensure that the Copy projects into workspace box is un-checked.

9.3.2 Building Example Projects with Workbench
Projects in a workspace can be built individually or as a group.
• Build a single project by selecting it and then click Project > Build Project.
• Build all projects in the current workspace by clicking Project > Build All.

9.4 Running the Examples (All linked in one complete DKM -
recommended)

Scenarios for building the OpenSplice examples
There are two included scenarios for build and deployment of the OpenSplice
examples.
You can build one DKM (Downloadable Kernel Module) containing the example,
OpenSplice, and all of its required services and support libraries, as well as a default
configuration file. (This is the recommended approach.)
50
Platform-specific Information

�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

Alternatively, seperate DKMs are supplied for each of the OpenSplice libraries and
services, and each example can be built as a separate DKM (containing only the
example), which we refer to as ‘AppOnly’ style.

9.4.1 Running the examples on two targets

9.4.1.1 The C pingpong example
Right-click on wb_sac_pingpong_kernel and then choose Rebuild Build
Project.
Next configure the targets to use the target server filesystem, mapped as on the
target as /tgtsvr.
Copy the wb_sac_pingpong_kernel/PENTIUM4gnu/sac_pingpong_
kernel/Debug/sac_pingpong_kernel.out built above to the target server for
each board as sac_pingpong_kernel.out.
Open a target shell connection to each board and in the C mode shell run:

ld 1,0,"/tgtsvr/sac_pingpong_kernel.out"
ospl_spliced

Open another target shell connection to one board and run:
pong "PongRead PongWrite"

Open another target shell on the other board and run:
ping "100 100 m PongRead PongWrite"
ping "100 100 q PongRead PongWrite"
ping "100 100 s PongRead PongWrite"
ping "100 100 b PongRead PongWrite"
ping "100 100 f PongRead PongWrite"
ping "1 10 t PongRead PongWrite"

9.4.1.2 The C++ pingpong example
Right-click on wb_sacpp_pingpong_kernel and then choose Rebuild Build
Project.
Next configure the targets to use the target server filesystem, mapped as on the
target as /tgtsvr.
Copy the wb_sacpp_pingpong_kernel/PENTIUM4gnu/sacpp_pingpong_
kernel/Debug/sac_pingpong_kernel.out built above to the target server for
each board as sacpp_pingpong_kernel.out.
Open a target shell connection to each board and in the C mode shell run:

ld 1,0,"/tgtsvr/sacpp_pingpong_kernel.out"
ospl_spliced
51
Platform-specific Information�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

Open another target shell connection to one board and run:
pong "PongRead PongWrite"

Open another target shell on the other board and run:
ping "100 100 m PongRead PongWrite"
ping "100 100 q PongRead PongWrite"
ping "100 100 s PongRead PongWrite"
ping "100 100 b PongRead PongWrite"
ping "100 100 f PongRead PongWrite"
ping "1 10 t PongRead PongWrite"

9.4.2 Running the examples on one target

9.4.2.1 The C pingpong example
Right-click on wb_sac_pingpong_kernel and then choose Rebuild Build
Project.
Next configure the targets to use the target server filesystem, mapped as on the
target as /tgtsvr.
Copy the wb_sac_pingpong_kernel/PENTIUM4gnu/sac_pingpong_
kernel/Debug/sac_pingpong_kernel.out built above to the target server as
sac_pingpong_kernel.out.
Open a target shell connection and in the C mode shell run:

ld 1,0,"/tgtsvr/sac_pingpong_kernel.out"
ospl_spliced

Open another target shell connection and run:
pong "PongRead PongWrite"

Open another target shell and run:
ping "100 100 m PongRead PongWrite"
ping "100 100 q PongRead PongWrite"
ping "100 100 s PongRead PongWrite"
ping "100 100 b PongRead PongWrite"
ping "100 100 f PongRead PongWrite"
ping "1 10 t PongRead PongWrite"

9.4.2.2 The C++ pingpong example
Right-click on wb_sacpp_pingpong_kernel and then choose Rebuild Build
Project.
Next configure the targets to use the target server filesystem, mapped as on the
target as /tgtsvr.
52
Platform-specific Information

�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

Copy the wb_sacpp_pingpong_kernel/PENTIUM4gnu/sacpp_pingpong_
kernel/Debug/sacpp_pingpong_kernel.out built above to the target server
as sacpp_pingpong_kernel.out.
Open a target shell connection and in the C mode shell run:

ld 1,0,"/tgtsvr/sacpp_pingpong_kernel.out"
ospl_spliced

Open another target shell connection and run:
pong "PongRead PongWrite"

Open another target shell and run:
ping "100 100 m PongRead PongWrite"
ping "100 100 q PongRead PongWrite"
ping "100 100 s PongRead PongWrite"
ping "100 100 b PongRead PongWrite"
ping "100 100 f PongRead PongWrite"
ping "1 10 t PongRead PongWrite"

9.4.3 Using a different path
If you want or need to use a path other than /tgtsvr (e.g. if you are using a
different filesystem) then you need to change the path set by the -e options of
osplconf2c in the .wrmakefile.
You can also set other environment variables with additional -e options.

9.4.4 Note about the example projects
The example builds by linking the object produced by compling the output of
osplconf2c along with the example application, the splice deamon, and services
enabled in the configuration XML, into one single downloadable kernel module.
Users producing their own application could of course decide to link the object and
library files into a monolithic kernel image instead.

9.4.5 Running the Examples (Alternative scenario, with multiple DKMs –
‘AppOnly’ style)

Loading separate DKMs is not recommended by PrismTech.
NOTE: There are no C++ examples provided for the AppOnly style and there is no
libdcpssacpp.out DKM because VxWorks only supports C++ modules that are
self-contained. However, it should still be possible to link your C++ application
with the libdcpssacpp.a, and then load the complete DKM after the other
OpenSplice DKMs.

i

C++
53
Platform-specific Information�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

9.4.5.1 The C pingpong example
Step 1: Right-click on wb_sac_pingpong_kernel_app_only for the C example or

wb_sacpp_pingpong_kernel_app_only for C++, then choose
Rebuild Project.

Step 2: Next configure the targets to use the target server filesystem, mapped on the target
as /tgtsvr (use different host directories for each target).

Step 3: Copy the ospl.xml file from the distribution to the target server directories, and
adjust for your desired configuration.

Step 4: Copy all the services from the bin directory in the distribution to the target server
directories (for example, spliced.out, networking.out, etc.).
To run the examples on two targets, start the OpenSplice daemons on each target.

Step 5: Open a ‘Host Shell’ (windsh) connection to each board, and in the C mode shell
enter:

cd "<path to opensplice distribution>"
ld 1,0,"lib/libddscore.out"
ld 1,0,"bin/ospl.out"
os_putenv("OSPL_URI=file:///tgtsvr/ospl.xml")
os_putenv("OSPL_LOGPATH=/tgtsvr")
os_putenv("PATH=/tgtsvr/")
ospl("start")

Please note that in order to deploy the cmsoap service for use with the OpenSplice
DDS Tuner, it must be configured in ospl.xml and the libraries named
libcmxml.out and libddsrrstorage.out must be pre-loaded:

cd "<path to opensplice distribution>"
ld 1,0,"lib/libddscore.out"
ld 1,0,"lib/libddsrrstorage.out"
ld 1,0,"lib/libcmxml.out"
ld 1,0,"bin/ospl.out"
os_putenv("OSPL_URI=file:///tgtsvr/ospl.xml")
os_putenv("OSPL_LOGPATH=/tgtsvr")
os_putenv("PATH=/tgtsvr/")
ospl("start")

Step 6: To load and run the examples:

For the C example:
ld 1,0,"lib/libdcpsgapi.out"
ld 1,0,"lib/libdcpssac.out"
cd "examples/dcps/PingPong/c/standalone"
ld 1,0,"sac_pingpong_kernel_app_only.out"

C

54
Platform-specific Information

�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

Step 7: Open a new ‘Host Shell’ connection to one board and run:
pong "PongRead PongWrite"

Step 8: Open another new ‘Host Shell’ on the other board and run:
ping "100 100 m PongRead PongWrite"
ping "100 100 q PongRead PongWrite"
ping "100 100 s PongRead PongWrite"
ping "100 100 b PongRead PongWrite"
ping "100 100 f PongRead PongWrite"
ping "1 10 t PongRead PongWrite"

9.4.6 Running the examples on one target
Proceed as described in the section above, but make all windsh connections to one
board, and only load and run ospl once.

9.4.6.1 Load-time Optimisation: pre-loading OpenSplice Service Symbols
Loading spliced and its services may take some time if done exactly as described
above. This is because the service DKMs (Downloadable Kernel Modules) and
entry points are dynamically loaded as required by OpenSplice.
It has been noted that the deployment may be slower when the symbols are
dynamically loaded from the Target Server File System. However, it is possible to
improve deployment times by pre-loading the symbols for the services that are
required by OpenSplice.
On startup, OpenSplice will attempt to locate the entry point symbols for the
services and invoke them. This removes the need for the dynamic loading of the
DKMs providing the symbols, and can equate to a quicker deployment. Otherwise,
OpenSplice will dynamically load the service DKMs.
For example, for an OpenSplice system that will deploy spliced with the networking
and durability services, the following commands could be used:

cd "<path to opensplice distribution>"
ld 1,0,"lib/libddscore.out"
ld 1,0,"bin/ospl.out"
ld 1,0,"bin/spliced.out"
ld 1,0,"bin/networking.out"
ld 1,0,"bin/durability.out"
os_putenv("OSPL_URI=file:///tgtsvr/ospl.xml")
os_putenv("PATH=/tgtsvr/bin")
os_putenv("OSPL_LOGPATH=/tgtsvr")
ospl("start")

The ospl-info.log file records whether entry point symbols were pre-loaded, or
a DKM has been loaded.
55
Platform-specific Information�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

9.4.6.2 Notes
In this scenario osplconf2c has been used with the -x and -d options to create an
empty configuraion which allows dynamic loading. The resulting object has been
included in the supplied libddsos.out. If desired, the end user could create a new
libddsos.out based on libddsos.a and a generated file from osplconf2c
without the -x option, in order to statically link some services, but also allow
dynamic loading of others if the built-in xml is later overridden using a file URI.
(See Section 7.2.1.4, Overriding OpenSplice configuration at runtime, on page 37.)

9.4.7 The osplconf2c tool
osplconf2c is required for example and user applications.
osplconf2c is a tool which processes the OpenSplice configuration XML, and
produces a source file to be compiled and linked into the final image. It contains the
data from the XML file, as well as any environment variables that you require to
configure OpenSplice and references to the symbols for the entry points of the
OpenSplice services.
Environment variables can be added using the -e option. For example, you would
use the -e "OSPL_LOGPATH=/xxx/yyy" option if you wanted the logs to be
placed in /xxx/yyy.
osplconf2c is run automatically by the example projects.

9.4.7.1 Overriding OpenSplice configuration at runtime
You can override the OpenSplice configuration XML provided to osplconf2c at
runtime by specifying the URI of a file when starting ospl_spliced on the target;
for example:

ospl_spliced "file:///tgtsvr/ospl.xml"

It should be noted, however, that the osplconf2c will have generated references to
the symbols for the services which are specified in the xml file when it started, and
only those services may be used in the new configuration, as other services will not
be included in the image.

9.4.7.2 The osplconf2c command

Usage
osplconf2c -h

osplconf2c [-u <URI>] [-e <env=var>]... [-o <file>]

Description of options
-h, -? List available command line arguments and give brief reminders of

their functions.

i

56
Platform-specific Information

�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

-u <URI> Identifies the configuration file to use (default: ${OSPL_URI}).
-o <file> Name of the generated file.
-e <env=var>Environment setting for configuration of OpenSplice

e.g. -e "OSPL_LOGPATH=/xxx/yyy"
57
Platform-specific Information�������	

 9.4 Running the Examples (All linked in one complete DKM - recommended)

58
Platform-specific Information

�������	

CHAPTER

10 Integrity
The ospl_projgen tool is in the HDE/bin directory of the DDS distribution. It is
a convenience tool provided for the Integrity platform in order to aid in the creation
of GHS Multi projects for running the DDS-supplied PingPong example, the
Touchstone performance suite, and the Chatter Tutorial. If desired, these generated
projects can be adapted to suit user requirements by using Multi and the
ospl_xml2int tool, which is also described in this chapter.

10.1 The ospl_projgen Command
The ospl_projgen tool has the following command line arguments:
 ospl_projgen -h
 ospl_projgen [-s <flash|ram>|-d] [-n] [-v] [-t <target>]
 [-l <c|c++>|c++onc] [-u <URI>] -b <bsp name>

[-m <board model>] -o <directory> [-f]

Arguments shown between square brackets [] are optional; other arguments are
mandatory. Arguments may be supplied in any order. All of the arguments are
described in detail below.

10.1.1 Description of the arguments
-h List the command line arguments and give brief reminders of their functions.
-s <flash|ram> Use this argument if you wish to generate a project that will be

statically linked with the kernel. The two options for this argument determine
whether the resulting kernel image will be a flashable image or a loadable
image. If both this argument and the -d argument are omitted the default of a
statically-linked ram-loadable image will be generated.

-d Use this argument to produce a project file that will yield a dynamic download
image.
NOTE: Arguments -s and -d are mutually exclusive.

-n Use this argument if you want to include the GHS network stack in your project
-v Use this argument if you want to include filesystem support in your project.
-t <target> Use this argument to specify which address spaces to include in

your project. Use -t list to show a list of available targets. (Targets available
initially are examples supplied with OpenSplice DDS and Integrity itself.)
59
 Platform-specific Information�������	

 10.2 PingPong Example

-l <c | c++ | c++onc> Use this argument to specify the language for your
project. The default is c++.

-u <URI> Use this argument to identify which configuration file to use. You can
omit this argument if you have the environment variable OSPL_URI set, or use it
if you want to use a different configuration file from the one referred to by
OSPL_URI . The default is $OSPL_URI . The xml2int tool uses this
configuration file when generating the Integrate file for your project.

-b <bsp name> Use this argument to specify the BSP name of your target board.
Use -b list to show a list of supported target boards.

-m <board model> Use this argument to specify the model number for the target
board. Use -b <bsp name> -m list to show a list of supported model
numbers. (There are no separate model numbers for pcx86 boards.)

-o <directory> Use this argument to specify the output directory for the project
files. The name you supply here will also be used as the name for the image file
that will be downloaded/flashed onto the Integrity board.

-f Use this argument to force overwrite of the output directory.
When you run the tool, the output directory specified with the -o argument will be
created. Go into this directory, run GHS Multi, and load the generated project.
If the output directory already exists and the -f argument has been omitted,
ospl_projgen will exit without generating any code and will notify you that it has
stopped.
NOTE: The NetworkInterfaceAddress configuration parameter is required for
Integrity nodes which have more than one ethernet interface, as it is not possible to
determine which are broadcast/multicast enabled. (See sections 3.5.2.1 and 3.9.2.1
Element NetworkInterfaceAddress in the Deployment Guide.)

10.1.2 Using mmstat and shmdump diagnostic tools on Integrity
When mmstat or shmdump targets are specified to ospl_projgen an address
space will be added to the generated project. There will also be an appropriate
mmstat.c or shmdump.c file generated into the project. In order to configure
these, the command line arguments can be edited in the generated .c files. The
mmstat tool can be controlled via telnet on port 2323 (by default).

10.2 PingPong Example
(Please refer to 5.5, Examples, on page 27 for a description of this example
application.)
To generate a project for the C++ PingPong example, follow these steps:
60
Platform-specific Information

�������	

 10.2 PingPong Example

Step 1: The I_INSTALL_DIR environment variable must be set to point to the Integrity
installation directory on the host machine before running ospl_projgen. For
example:

Step 2: Navigate to the examples/dcps/standalone/C++/PingPong directory
Step 3: Run ospl_projgen with the following arguments:

Step 4: Go into the projgen directory, which contains default.gpj and a src directory.
(default.gpj is the default Multi project that will build all the sub-projects found
in the src directory, and the src directory contains all the sub-projects and
generated files produced by the tool.)

Step 5: Start Multi:

You should see a screen similar to the one in Figure 5 below:

% export I_INSTALL_DIR=/usr/ghs/int509

% ospl_projgen -s ram -v -n -t pingpong -l c++ -b pcx86 -o projgen

% multi default.gpj
61
Platform-specific Information�������	

 10.2 PingPong Example

Figure 5 Integrity: project defaults
Step 6: If no changes are required to the project, right-click on default.gpj and then

click Build to build the project.
Upon successful completion of the build process, an image is generated (in our case
called projgen) in the src directory and you are now ready to either dynamically
download the resulting image to the board or load the kernel image onto the board
(depending on the arguments you have specified) and run the PingPong example.
If ospl_projgen is run and the project built as described above, the generated
image will contain:
• GHS Integrity OS (Kernel, Networking, and Filesystem support)
• OpenSplice DDS (including spliced and the services described in the
ospl.xml file)

• the PingPong example
62
Platform-specific Information

�������	

 10.3 Changing the ospl_projgen Arguments

Once the image has been downloaded to the board, the pong “Initial task” should be
started and then the ping AddressSpace can be started in the same way, so that the
example begins the data transfer. Parameters are not required to be passed to the
Integrity processes because the ospl_projgen tool generates code with particular
values that simulate the passing of parameters.
This also applies to the Chat Tutorial (see 5.5, Examples, on page 27), if
ospl_projgen is run with the -t chat argument.

10.3 Changing the ospl_projgen Arguments
If changes are subsequently required to the arguments that were originally specified
to the ospl_projgen tool, there are two choices:

a) Re-run the tool and amend the arguments accordingly, or
b) Make your changes through the Multi tool.

The first method guarantees that your project files will be produced correctly and
build without needing manual changes to the project files. To use this method,
simply follow the procedure described above but supply different arguments.
The second method is perhaps a more flexible approach, but as well as making some
changes using Multi you will have to make other changes by hand in order for the
project to build correctly.
The following section describes the second method.

10.3.1 Changing the generated OpenSplice DDS project using Multi
You can make changes to any of the settings you specified with ospl_projgen by
following these steps:

Step 1: Right-click on the highlighted ospl.xml file (as shown above) and click Set
Options....

Step 2: Select the All Options tab and expand the Advanced section.
Step 3: Select Advanced OpenSplice DDS XML To Int Convertor Options. In the

right-hand pane you will see the options that you have set with the ospl_projgen
tool with their values, similar to Figure 6 below.
63
Platform-specific Information�������	

 10.4 The ospl_xml2int Tool

Figure 6 Integrity: changing project options in Multi
Step 4: Right-click on the parameter that you want to change. For example, if you don’t

need filesystem support to be included in the kernel image, right-click on Include
filesystem support and set the option to Off.
The arguments for xml2int in the bottom pane are updated to reflect any changes
that you make. If you switch off filesystem support, the -v argument is removed
from the arguments. (The xml2int tool is used to generate the ospl.int Integrate
file that will be used during the Integrate phase of the project. For more information
on xml2int, please see section 10.4.1, The ospl_xml2int command, below.)
Note that if you do remove filesystem support from the kernel image you should
also remove all references to the ivfs library, and make appropriate changes to the
ospl_log.c file as well. See section 10.6, Amending OpenSplice DDS
Configuration with Multi, on page 68, for information about ospl_log.c.
Similarly you can change any other option and the changes are applied instantly.

Step 5: When the changes are complete, rebuild the project by right-clicking on
default.gpj and then click Build to build the project.

10.4 The ospl_xml2int Tool
The ospl_xml2int tool is used to inspect your OpenSplice DDS configuration file
(ospl.xml) and generate an appropriate Integrate file (ospl.int). For more
information on Integrate files please consult the Integrity manual.
64
Platform-specific Information

�������	

 10.4 The ospl_xml2int Tool

10.4.1 The ospl_xml2int command
The ospl_xml2int tool can be run with the following command line arguments:

ospl_xml2int -h
ospl_xml2int [-s|-d] [-v] [-n] [-t <target>] [-u <URI>]

[-o <file>]

Arguments shown between square brackets [] are optional; other arguments are
mandatory. Arguments may be supplied in any order. All of the arguments are
described in detail below.

10.4.2 Description of the arguments
-h List the command line arguments and give brief reminders of their functions
-s Generate for static linkage with kernel.
-d Use this argument to generate an Integrate file that will yield a dynamic

download image. If both this argument and the -s argument are omitted the
default of a statically-linked image will be generated.
NOTE: arguments -s and -d are mutually exclusive.

-v Include filesystem support.
-n Include network support.
-t <target> Available targets:

chat include chat tutorial
pingpong include PingPong example
touchstone include Touchstone
mmstat include mmstat
shmdump include shmdump

Multiple -t arguments may be given. This enables you to use mmstat and/or
shmdump (see Using mmstat and shmdump diagnostic tools on Integrity on
page 60) in conjunction with one of the examples.

-u <URI> Identifies the configuration file to use (default: ${OSPL_URI}).
-o <file> Name of the generated Integrate file.
Applications linking with OpenSplice DDS must comply with the following
requirements:
• The First and Length parameters must match those of spliced address space

(these are generated from ospl.xml).
• The address space entry for your application in the Integrate file must include

entries as shown in the example below.
Have a look at the ospl.int for the PingPong example if in doubt as to what the
format should be. (Make sure that you have built the project first or else the file will
be empty).
65
Platform-specific Information�������	

 10.4 The ospl_xml2int Tool

Example ospl.int contents

NOTE: If you make any changes to the ospl.int file generated by the project and
then you make any changes to the ospl.xml file and rebuild the project, the
changes to the ospl.int file will be overwritten.
Make sure that you also edit the global_table.c and mounttable.c files to
ma tch you r s e tup . These f i l e s c a n b e f o u n d u n d e r
src/projgen/kernel.gpj/kernel_kernel.gpj a n d
src/projgen.gpj/kernel.gpj/ivfs_server.gpj as shown in Figure 7
below:

AddressSpace
 .
 .
 .

 Object 10
 Link ResourceStore
 Name ResCon
 OtherObjectName DDS_Connection
 EndObject

 Object 11
 Link ResourceStore
 Name ConnectionLockLink
 OtherObjectName DDS_ConnectionLock
 EndObject

 Object 12
 MemoryRegion your_app_name_database
 MapTo splice_database
 First 0x20000000
 Length 33554432
 Execute true
 Read true
 Write true

 EndObject
 .
 .
 .
EndAddressSpace
66
Platform-specific Information

�������	

 10.5 Critical Warning about Object 10 and Object 11

Figure 7 Integrity: changing global_table.c and mounttable.c
Once you have made all of the required changes to ospl.int, you must rebuild the
whole project. Your changes will be picked up by OpenSplice DDS automatically.

10.5 Critical Warning about Object 10 and Object 11
We have used Object 10 and Object 11 in various address spaces to declare a
semaphore and a connection object, but they may already be in use on your system.
You can change these numbers, in the ospl.int file, but if you do then you must
change all of the address spaces where Object 10 and Object 11 are defined
(except those for ResourceStore as noted below). The value replacing 10 must be
the same for every address space, and likewise for the value replacing 11. You must
change all references in order for OpenSplice DDS to work correctly.
The only exception is the ResourceStore address space. Object 10 and
Object 11 are unique to the OpenSplice DDS ResourceStore and they MUST
NOT be altered. If you do change them, OpenSplice DDS WILL NOT WORK!
67
Platform-specific Information�������	

 10.6 Amending OpenSplice DDS Configuration with Multi

10.6 Amending OpenSplice DDS Configuration with Multi
You can make changes to the OpenSplice DDS configuration from Multi by editing
t he f i l e s u nd e r t he p ro j e c t
src/projgen.gpj/opensplice_configuration.gpj/libospl_cfg.gpj.
See Figure 8 below:

Figure 8 Integrity: changing OpenSplice DDS configuration in Multi

There are five files here but you may only change ospl.xml and ospl_log.c.
The others must NOT be altered!
ospl.xml This is your OpenSplice DDS configuration file. (See Section 5.4,

Configuration, on page 24 for more information about the options an
OpenSplice DDS configuration file may have.)

ospl_log.c This file determines where the log entries (errors, warnings and
informational messages) from OpenSplice DDS go. The way the default file is
generated by ospl_projgen depends on whether you have specified
filesystem support or not. (See comments within the file for more information.)
68
Platform-specific Information

�������	

CHAPTER

11 Windows CE
This chapter provides a brief description of how to deploy OpenSplice DDS on
Windows CE.

11.1 Prerequisites
OpenSplice DDS requires certain environment variables to be present; as
Windows CE does not support traditional environment variables, these are
simulated by creating registry entries which contain the required data. References in
this chapter to ‘environment variables’ are therefore actually references to values in
the Windows CE registry.
The environment variables expected by OpenSplice DDS are:
PATH

The PATH variable must include the directory containing the OpenSplice DDS
executables that may be launched by the ospl utility.

OSPL_URI
This variable contains the location of the default ospl.xml configuration file
which is used when not otherwise specified.

The descriptions in this chapter assume that the values shown in the table below
have been added to the registry key

HKEY_LOCAL_MACHINE\Software\PrismTech\OpenSpliceDDS\
<OpenSpliceVersion>

Windows CE Registry keys

All OpenSplice DDS dynamic link library (dll) files must also be copied into the
\Windows directory on the Windows CE device prior to deployment.

Name Type Data
PATH REG_SZ \NAND Flash\OpenSpliceDDS\

<OpenSpliceVersion>\HDE\armv4i.wince

OSPL_URI REG_SZ file://NAND Flash/OpenSpliceDDS/
<OpenSpliceVersion>/HDE/armv4i.wince/
etc/config/ospl.xml
69
 Platform-specific Information�������	

 11.2 Setting Registry Values with a CAB File

11.2 Setting Registry Values with a CAB File
In development, a CAB file can be used to register the necessary variables in the
registry. Place the CAB file in the Cold Boot directory on the target device (i.e.
\NAND Flash\ColdBootInit) to make the registry settings available as soon as
the device has booted.

11.2.1 Alternatives to CAB file
Microsoft’s Windows CE Remote Registry Editor can be used instead of a CAB file
to set the necessary registry values. Alternatively, PrismTech also provides a
convenient method of editing the registry variables by way of the ospl utility using
the getenv and putenv parameters (described below).
Please refer to Microsoft’s Windows CE documentation for detailed information
about CAB files and the Remote Registry Editor.

11.3 The OpenSplice DDS Environment
OpenSplice DDS requires the contents of the bin, lib and etc directories from
within the OpenSplice DDS installation to be available on the Windows CE target
hardware. For development purposes, Microsoft’s ActiveSync can be used to load
these on to the target system. The following description assumes that the bin, lib
and etc directories have been copied from the OpenSplice DDS installation onto
the target at the following location:

\NAND Flash\OpenSpliceDDS\<OpenSpliceVersion>\HDE\armv4i.wince

For simplicity the whole OpenSpliceDDS installation directory can be copied to
the \Nand Flash directory.
The following description explains deployment on Windows CE by using the
Windows CE console. It is assumed that the console’s PATH variable has been set to
point to the directory containing the OpenSplice DDS executables. For example:

PATH \NAND Flash\OpenSpliceDDS\<OpenSpliceVersion>\HDE\
armv4i.wince\bin;%PATH%

(All OpenSplice DDS dynamic link library (dll) files must have been copied into
the \Windows directory on the Windows CE device prior to deployment.)
When running OpenSplice executables on the command prompt, it is useful to
redirect any output to text files by using the ‘>’ operator.
If the PATH and OSPL_URI variables have not already been set via a CAB file on
device boot up, use the following commands to set those values manually:

ospl putenv PATH "\NAND Flash\OpenSpliceDDS\<OpenSpliceVersion>\
HDE\armv4i.wince\bin" > osplputenv-path.txt
70
Platform-specific Information

�������	

 11.4 Secure Networking

ospl putenv OSPL_URI
"file://NAND Flash/OpenSpliceDDS/<OpenSpliceVersion>/
HDE/armv4i.wince/etc/config/ospl.xml" > osplputenv-ospluri.txt

The values can be checked if required by using Microsoft’s Windows CE Remote
Registry Editor, or by running the ospl getenv command:

ospl getenv PATH > osplgetenv-path.txt

11.4 Secure Networking
The secure networking service uses OpenSSL for cryptography support. To use this
feature, the library libeay32.dll is required; it must be copied to the \Windows
directory on the Windows CE device.
OpenSplice is tested against OpenSSL version 0.9.8i. This may be built as described
below.

11.4.1 Building OpenSSL for Windows CE 6.0
This section describes the steps required to get an OpenSSL build for Windows CE.
The version of OpenSSL used is 0.9.8i. The third-party library wcecompat is used,
which also has to be built manually for Windows CE 6.0.
(T h e d e s c r i p t i o n t h a t f o l l o w s i s b a s e d o n t h e o n e g i v e n a t
http://blog.csdn.net/sooner01/archive/2009/06/22/4289147.aspx.)

11.4.1.1 Prerequisites
The following are needed to make an OpenSSL build for Windows CE 6.0:
• Microsoft Visual Studio 2005 (VS2008 might also work but it has not been tested)
• An installed WinCE 6.0 SDK to be targeted. In this description the target SDK is

‘WinCE-GS3Target’
• Perl

You will need to install Active Perl, from http://www.activestate.com/ActivePerl.
(Note that perl by MSYS does not create correct makefiles.)

• OpenSSL
The OpenSSL sources can be downloaded from http://www.openssl.org/. In this
description we use version 0.9.8i. Other versions might not work with the steps
described here.

• wcecompat compatibility library
The wcecompat library adds the functionality to the C Runtime Library
implementation of Windows CE which is needed in order to build OpenSSL for
Windows CE. Obtain this from github.com/mauricek/wcecompat. Note that you
71
Platform-specific Information�������	

 11.4 Secure Networking

should not download the latest version; browse the history and download the
version committed on November 21, 2008 named ‘updates for OpenSSL
0.9.9’ with commit number ‘f77225b...’.

11.4.1.1.1 Build wcecompat
Step 1: Extract the wcecompat download to an appropriate location. In the description

below the location C:\wcecompat is used but you can use any location you want.
Step 2: Start Visual Studio 2005 and open a Visual Studio 2005 command prompt.
Step 3: Go to the wcecompat directory (C:\wcecompat)
Step 4: Set the building environment:

set OSVERSION=WCE600

set TARGETCPU=ARMV4I

set PLATFORM=VC-CE

set PATH=C:\Program Files\Microsoft Visual Studio
8\VC\ce\bin\x86_arm;C:\Program Files\Microsoft Visual Studio
8\Common7\IDE;%PATH%

set INCLUDE=C:\Program Files\Windows CE
Tools\wce600\WinCE-GS3Target\include\ARMV4I

set LIB=C:\Program Files\Windows CE
Tools\wce600\WinCE-GS3Target\lib\ARMV4I;C:\Program
Files\Microsoft Visual Studio 8\VC\ce\lib\armv4

If you target a different SDK, replace the text ‘WinCE-GS3Target’ in the lines
above with your own SDK.

Step 5: Call perl config.pl to create the makefile configuration.
Step 6: Call nmake to build the wcecompat library.
Step 7: Exit the command prompt and exit Visual Studio to be sure of starting with a clean

environment in the next stage.

11.4.1.1.2 Build OpenSSL
Step 1: Extract OpenSSL to any location you like.
Step 2: Apply the OpenSSL WinCE patch which can be found at

http://marc.info/?l=openssl-dev&m=122595397822893&w=2.
Step 3: Start Visual Studio 2005 and open a command prompt.
Step 4: Go to your openSSL directory.
Step 5: Set the building environment:

set OSVERSION=WCE600

set TARGETCPU=ARMV4I

set PLATFORM=VC-CE
72
Platform-specific Information

�������	

 11.4 Secure Networking

set PATH=C:\Program Files\Microsoft Visual Studio
8\VC\ce\bin\x86_arm;C:\Program Files\Microsoft Visual Studio
8\VC\bin;C:\Program Files\Microsoft Visual Studio
8\VC\PlatformSDK\bin;C:\Program Files\Microsoft Visual Studio
8\Common7\Tools;C:\Program Files\Microsoft Visual Studio
8\Common7\IDE;C:\Program Files\Microsoft Visual Studio
8\Common\Tools;C:\Program Files\Microsoft Visual Studio
8\Common\IDE;C:\Program Files\Microsoft Visual Studio 8\;%PATH%

set INCLUDE=C:\Program Files\Microsoft Visual Studio
8\VC\ce\include;C:\Program Files\Windows CE
Tools\wce600\WinCE-GS3Target\include\ARMV4I;C:\Program
Files\Windows CE Tools\wce600\WinCE-GS3Target\include;C:\Program
Files\Microsoft Visual Studio 8\VC\ce\atlmfc\include;C:\Program
Files\Microsoft Visual Studio 8\SmartDevices\SDK\SQL
Server\Mobile\v3.0;

set LIB=C:\Program Files\Windows CE
Tools\wce600\WinCE-GS3Target\lib\ARMV4I;C:\Program
Files\Microsoft Visual Studio
8\VC\ce\atlmfc\lib\ARMV4I;C:\Program Files\Microsoft Visual
Studio 8\VC\ce\lib\ARMV4I

set WCECOMPAT=C:\wcecompat

If you target a different SDK, replace the text ‘WinCE-GS3Target’ in the lines
above with your own SDK. Also, change the wcecompat directory to your own if
you used a different location.

Step 6: Type perl Configure VC-CE to set up the compiler and OS.
Step 7: Type ms\do_ms to build the makefile configuration.
Step 8: Type nmake -f ms\cedll.mak to build the dynamic version of the library.

11.4.1.1.3 Troubleshooting
If you get the following error message:

PTO -c .\crypto\rsa\rsa_pss.c
cl : Command line warning D9002 : ignoring unknown option '/MC'
rsa_pss.c
f:\openssl\openssl98\crypto\rsa\rsa_pss.c(165) : error C2220:
warning treated as error - no 'object' file generated
f:\openssl\openssl98\crypto\rsa\rsa_pss.c(165) : warning C4748:
/GS can not protect parameters and local variables from local
buffer overrun because optimizations are disabled in function
NMAKE : fatal error U1077: '"F:\Program Files\Microsoft Visual
Studio 8\VC\ce\bin\x86_arm\cl.EXE"' : return code '0x2'
Stop.

Then remove ‘/WX’ in the makefile (ce.mak).
73
Platform-specific Information�������	

 11.5 Deploying OpenSplice DDS

11.5 Deploying OpenSplice DDS
ospl start

This command will start the OpenSplice DDS splicedaemon and OpenSplice
DDS services specified within the configuration referred to by the OSPL_URI
variable:
ospl start > osplstart.txt

A different configuration file can be specified as an additional parameter; for
example:
ospl start "file://NAND Flash/OpenSpliceDDS/<OpenSpliceVersion>/
HDE/armv4i.wince/etc/config/ospl.xml" > osplstart.txt

ospl list
This command will list all the OpenSplice DDS configurations that are
currently running on the node.
ospl list > ospllist.txt

ospl stop
This command will stop the OpenSplice DDS splicedaemon and OpenSplice
DDS services specified within the configuration referred to by the OSPL_URI
variable:
ospl stop > osplstop.txt

A different configuration to be stopped can be specified as an additional
parameter; for example:
ospl stop "file://NAND Flash/OpenSpliceDDS/<OpenSpliceVersion>/
HDE/armv4i.wince/etc/config/ospl.xml" > osplstop.txt

11.6 Using the mmstat Diagnostic Tool on Windows CE
To run mmstat, use this command:

start mmstat > mmstat.txt

To see the full list of options, use this command:
start mmstat -h > mmstat-help.txt

The mechanism for terminating mmstat on Windows CE is different from other
operating systems. All running instances of mmstat can be terminated with the
following command:

start mmstat -q > mmstat-quit.txt

If there are multiple instances of mmstat running, a particular instance can be
terminated by specifying the process identifier:

start mmstat -q -x <process id> > mmstat-quit.txt

where <process id> is displayed in the output for the particular instance of
mmstat.
74
Platform-specific Information

�������	

 11.7 OpenSplice Examples

11.7 OpenSplice Examples
Please refer to section 5.5, Examples, on page 27, for descriptions of the OpenSplice
DDS examples.

11.7.1 Building the examples
There is a shortcut to load the examples into Microsoft Visual Studio which can be
accessed from Start > Programs > OpenSpliceDDS <OpenSpliceVersion>
armv4i.wince HDE > Examples.
Once the projects are open in Microsoft Visual Studio, click Build/Rebuild
Solution at the appropriate level to build the required examples.
Copy the produced executable files to the OpenSplice DDS bin directory (i.e.
\NAND Flash\OpenSpliceDDS\<OpenSpliceVersion>\HDE\armv4i.winc
e\bin) on the Windows CE device. For the PingPong example the executable files
are Ping.exe and Pong.exe . For the Tutorial example the fi les are
Chatter.exe, MessageBoard.exe, and UserLoad.exe.
As an alternative to using the shortcut and to set up the environment for a new
project perform the following steps:

Step 1: Run the OpenSplice command prompt from the OpenSplice entry under the
Windows Start button:
Start > Programs > OpenSpliceDDS <OpenSpliceVersion> armv4i.wince HDE >
OpenSpliceDDS command prompt

Step 2: Copy the Windows Microsoft Visual Studio environment variables to the new
command prompt. To obtain these, right-click on the Properties for the Visual
Studio 2005 Command Prompt entry located at Start > Programs > Microsoft
Visual Studio 2005 > Visual Studio Tools > Visual Studio 2005 Command
Prompt, and paste the Shortcut Target entry into the OpenSplice command
prompt. For example this could be

%comspec% /k ""C:\Program Files\Microsoft Visual Studio 8\
VC\vcvarsall.bat"" x86

Step 3: Start Microsoft Visual Studio in this prompt:
devenv

Step 4: Open the solution file at
<OpenSpliceDDSInstallation>/examples/examples.sln

11.7.2 Deploying the PingPong example
Start OpenSplice DDS as described above. The Ping and Pong executables can then
be started as follows:

start pong PongRead PongWrite > pong.txt
start ping 100 100 m PongRead PongWrite > ping.txt
75
Platform-specific Information�������	

 11.7 OpenSplice Examples

The ping.txt file produced should contain the expected Ping Pong measurement
statistics for 100 cycles. The Pong executable can be shut down by running the
ping shutdown command:

start ping 1 1 t PongRead PongWrite > ping-shutdown.txt

11.7.3 Deploying the Tutorial example
Start OpenSplice DDS as described above. The Tutorial executables can then be
started as follows:

start UserLoad > userload.txt
start MessageBoard > messageboard.txt
start Chatter 1 John > chatter.txt

The messageboard.txt file produced should contain the messages received from
the Chatter executable. The MessageBoard executable can be terminated by
running Chatter again with the -1 option:

start Chatter -1 > chatter-shutdown.txt
76
Platform-specific Information

�������	

CHAPTER

12 PikeOS POSIX
This chapter provides a brief description of how to deploy OpenSplice DDS on
PikeOS.

12.1 How to Build for PikeOS
For this target, OpenSplice must be configured in the single-process mode and
executables must be statically linked. Also, to avoid requiring filesystem support,
the ospl.xml configuration file is built into the executable. A tool named
osplconf2c is provided to generate the code required for this.
When executed with no arguments, osplconf2c takes the configuration file
specified by OSPL_URI (only file: URIs are supported) and generates a C source
file named ospl_config.c. The URI and filename can be specified using the -u
and -o options respectively. The generated code should be compiled and linked with
each executable. It comprises an array representing the configuration file and also
the entry points which allow the configured services to be started as threads.
OpenSplice is built against the BSD POSIX support in PikeOS (bposix), and also
uses the lwIP networking facility. When linking an executable for PikeOS
deployment it is necessary to specify the system libraries as follows:

-llwip4 -lsbuf -lm -lc -lp4 -lvm -lstand

The OpenSplice libraries for each configured service (networking, cmsoap, etc.)
also have to be linked in.

12.2 Deployment Notes
When setting up an integration project in which to deploy an OpenSplice executable
the following items should be configured:
• Networking should be enabled using the LwIP stack.
• The amount of available memory will generally need to be increased. We

recommend a minimum of 48MB for OpenSplice partitions.
In CODEO:

Step 1: Create a new integration project based on the devel-posix template.
Step 2: Edit project.xml.conf:

1. Configure networking for the muxa in the service partition, if required.
2. Enable LwIP in the POSIX partition, set its device name and IP addresses.
77
 Platform-specific Information�������	

 12.3 Limitations

3. Add a dependency in the POSIX partition on the network driver file provider.
Step 3: Edit vmit.xml:

I n t h e P O S I X p a r t i t i o n , s e t t h e SizeBytes p a r a m e t e r i n
Memory Requirement->RAM_[partition] to at least 0x03000000.

Step 4: Copy your OpenSplice executable into the project’s target directory and build the
project.

12.3 Limitations
Multicast networking is not supported on PikeOS POSIX part i t ions.
Consequentially, the DDSI networking service is not supported. The native
networking service is supported in broadcast mode.

12.4 PikeOS on Windows Hosts
Developing with OpenSplice for PikeOS on Windows differs from OpenSplice on
other Windows-hosted platforms. This is because PikeOS uses Cygwin to present a
Unix-like environment for cross-development. OpenSplice development therefore
follows similar practice to the Unix-hosted editions; for example, you would start a
session by entering a bash shell and sourcing the release.com file.
However, the OpenSplice tools (idlpp, osplconf2c, ospltun, etc.) are built as
Windows executables or will be running in Java for Windows and so need to be run
with Windows-style pathnames. This is handled using the cygpath command as
seen in the release.com script and the example makefiles. Tuner and
Configurator may be launched from the Start menu as usual.

12.4.1 Building the examples
This proceeds as would be expected in a Unix environment. Assuming that
OpenSplice and PikeOS are installed in the default locations:
• Start Cygwin bash
1. declare -x PIKEOS_HOME=/opt/pikeos-3.1
2. declare -x PATH=$PATH:$PIKEOS_HOME/cdk/ppc/oea/bin
3. . /opt/OpenSpliceDDS-V6.2.3/HDE/ppc.pikeos3/release.com
4. cd $OSPL_HOME/examples
5. make
78
Platform-specific Information

�������	

 12.4 PikeOS on Windows Hosts

12.4.2 Using a custom LwIP
The example makefiles are set up by default to link against the build of LwIP
distributed with PikeOS; however, in some circumstances it may be useful to rebuild
LwIP. In this case, set the environment variable LWIP_HOME to a directory
containing liblwip4.a, lwipconfig.o and lwipopts.h prior to building the
examples.
79
Platform-specific Information�������	

 12.4 PikeOS on Windows Hosts

80
Platform-specific Information

�������	

CHAPTER

13 ELinOS
This chapter provides notes about deploying OpenSplice DDS on ELinOS.

13.1 Deployment notes
OpenSplice may be deployed in an ELinOS system.
The following ELinOS features should be enabled:
• Kernel support for System-V IPC
• Use full shmem filesystem
• tmpfs

The following system libraries are required:
• stdc++

• pthread

• rt

• dl

• z

• m

We do not recommend running with less than 32M of system memory.

13.2 Limitations
ELinOS partitions within PikeOS are supported, but DDSI networking will not
function as it requires a multicast-capable interface.
The native networking service is supported in a broadcast configuration.
81
 Platform-specific Information�������	

 13.2 Limitations

82
Platform-specific Information

�������	

	Getting Started Guide
	Table of Contents
	Preface
	About the Getting Started Guide
	Contacts

	About OpenSplice DDS
	1 Why OpenSplice DDS
	1.1 What is OpenSplice DDS?
	1.2 Why Use It?
	1.3 OpenSplice DDS Summary
	1.4 OpenSplice DDS Architecture
	1.4.1 Overall
	1.4.2 Scalability
	1.4.3 Configuration
	1.4.4 Single Process Library Architecture
	1.4.5 Shared Memory architecture

	1.5 OpenSplice DDS Implementation Benefits
	1.6 Conclusion

	2 Product Details
	2.1 Key Components
	2.1.1 Services
	2.1.2 Tools

	2.2 Key Features
	2.3 Language and Compiler Bindings
	2.3.1 Building your own C++ and CORBA APIs
	2.3.1.1 Building your own ISO C++ API
	2.3.1.2 Building your own Standalone C++ API
	2.3.1.3 Building your own CORBA C++ API
	2.3.1.4 Building your own CORBA Java API

	2.4 Platforms

	Using OpenSplice DDS
	3 Documentation
	4 Information Sources
	4.1 Product Information
	4.1.1 Knowledge Base
	4.1.2 Additional Technical Information

	4.2 Support

	Installation and Configuration
	5 Installation and Configuration
	5.1 OpenSplice DDS Development and Run-Time
	5.2 Installation for UNIX and Windows Platforms
	5.3 Installation on Other Platforms
	5.4 Configuration
	5.5 Examples
	5.5.1 Using the OpenSplice Tools

	6 Licensing OpenSplice
	6.1 General
	6.1.1 Development and Deployment Licenses

	6.2 Installing the License File
	6.3 Running the License Manager Daemon
	6.3.1 Utilities

	Platform-specific Information
	7 VxWorks 5.5.1
	7.1 Building a VxWorks Kernel
	7.2 Scenarios for Building the OpenSplice Examples
	7.2.1 The OpenSplice Examples (All linked in one complete DKM - recommended)
	7.2.1.1 To build the standalone C PingPong example
	7.2.1.2 Note about the example projects
	7.2.1.3 The osplconf2c tool
	7.2.1.4 Overriding OpenSplice configuration at runtime
	7.2.1.5 Running the Examples
	7.2.1.6 Background
	7.2.1.7 How to start spliced and related services
	7.2.1.8 The osplconf2c command

	7.3 The OpenSplice Examples (Alternative scenario, with multiple DKMs)
	7.3.1 To build the standalone C pingpong example
	7.3.2 How to start spliced and related services
	7.3.3 To run the C PingPong example from winsh
	7.3.4 Load-time Optimisation: pre-loading OpenSplice Service Symbols
	7.3.5 Notes

	8 VxWorks 6.x RTP
	8.1 Installation
	8.2 VxWorks Kernel Requirements
	8.3 Deploying OpenSplice DDS
	8.4 OpenSplice Examples
	8.4.1 Importing Example Projects into Workbench
	8.4.2 Building Example Projects with Workbench
	8.4.3 Deploying OpenSplice Examples
	8.4.3.1 Deploying PingPong
	8.4.3.2 Deploying the Chat Tutorial

	9 VxWorks 6.x Kernel Mode
	9.1 VxWorks Kernel Requirements
	9.2 Deploying OpenSplice DDS
	9.2.1 Special notes for this platform

	9.3 OpenSplice Examples
	9.3.1 Importing Example Projects into Workbench
	9.3.2 Building Example Projects with Workbench

	9.4 Running the Examples (All linked in one complete DKM - recommended)
	9.4.1 Running the examples on two targets
	9.4.1.1 The C pingpong example
	9.4.1.2 The C++ pingpong example

	9.4.2 Running the examples on one target
	9.4.2.1 The C pingpong example
	9.4.2.2 The C++ pingpong example

	9.4.3 Using a different path
	9.4.4 Note about the example projects
	9.4.5 Running the Examples (Alternative scenario, with multiple DKMs - ‘AppOnly’ style)
	9.4.5.1 The C pingpong example

	9.4.6 Running the examples on one target
	9.4.6.1 Load-time Optimisation: pre-loading OpenSplice Service Symbols
	9.4.6.2 Notes

	9.4.7 The osplconf2c tool
	9.4.7.1 Overriding OpenSplice configuration at runtime
	9.4.7.2 The osplconf2c command

	10 Integrity
	10.1 The ospl_projgen Command
	10.1.1 Description of the arguments
	10.1.2 Using mmstat and shmdump diagnostic tools on Integrity

	10.2 PingPong Example
	10.3 Changing the ospl_projgen Arguments
	10.3.1 Changing the generated OpenSplice DDS project using Multi

	10.4 The ospl_xml2int Tool
	10.4.1 The ospl_xml2int command
	10.4.2 Description of the arguments

	10.5 Critical Warning about Object 10 and Object 11
	10.6 Amending OpenSplice DDS Configuration with Multi

	11 Windows CE
	11.1 Prerequisites
	11.2 Setting Registry Values with a CAB File
	11.2.1 Alternatives to CAB file

	11.3 The OpenSplice DDS Environment
	11.4 Secure Networking
	11.4.1 Building OpenSSL for Windows CE 6.0
	11.4.1.1 Prerequisites

	11.5 Deploying OpenSplice DDS
	11.6 Using the mmstat Diagnostic Tool on Windows CE
	11.7 OpenSplice Examples
	11.7.1 Building the examples
	11.7.2 Deploying the PingPong example
	11.7.3 Deploying the Tutorial example

	12 PikeOS POSIX
	12.1 How to Build for PikeOS
	12.2 Deployment Notes
	12.3 Limitations
	12.4 PikeOS on Windows Hosts
	12.4.1 Building the examples
	12.4.2 Using a custom LwIP

	13 ELinOS
	13.1 Deployment notes
	13.2 Limitations

