
�������	

OpenSplice
Version 6.x

Evaluation & Benchmarking
Guide

1
 �������	

 1 Introduction
One of the key differentiators of OpenSplice Enterprise is that it provides a user
with the ability to choose exactly how to deploy Data Distribution Service (DDS)
applications, i.e. there are different DDS system architecture deployment modes and
also different networking service protocols. This allows a user to maximize both
intra-nodal and inter-nodal performance based on requirements specific to their own
use case. When evaluating OpenSplice Enterprise it is very important to understand
all of these features and benefits to ensure that the most appropriate combination is
evaluated against your specific performance criteria. Once the performance figures
have been observed the choice is usually clear.
Every customer use case and set of requirements is different, so let us briefly guide
you through how to best deploy OpenSplice Enterprise so that it meets and exceeds
your expectations. Here we explain how easy it is to get started with OpenSplice
Enterprise and observe the excellent performance and scalability it provides.
OpenSplice Enterprise is even shipped with dedicated performance tests that the
user can build and run easily.
Note that this Guide serves only as an introduction and does not replace the full
OpenSplice Enterprise reference and user guides.

2
 �������	

 2 OpenSplice Enterprise Basics
OpenSplice Enterprise is configured using an XML configuration file. In this file,
the user specifies the architectural model and OpenSplice Enterprise services that
are to run when the DDS infrastructure is started.
The OSPL_URI environment variable refers to the specific XML configuration file
that is used for the current deployment. The default value refers to the ospl.xml
file located in the etc/config directory of the OpenSplice Enterprise installation.
The installation directory itself can be referred to by the OSPL_HOME environment
variable. Please see section 6.1 on page 11 for details of how to set up the
OpenSplice Enterprise environment.
A number of other sample configuration files that can be used when benchmarking
OpenSplice Enterprise are also provided in the etc/config directory.
The OSPL_URI variable is of the form:

Please refer to the OpenSplice_Deployment.pdf for more details of the
OSPL_URI variable, but now let’s see what aspects of the OpenSplice deployment
are controlled by this file.

OSPL_URI=file://$OSPL_HOME/etc/config/ospl.xml

OSPL_URI=file://%OSPL_HOME%\etc\config\ospl.xml

Linux

WIN

 3 OpenSplice Architectural Modes
OpenSplice Enterprise provides two main architectural modes. These are the Single
Process deployment mode which provides a Standalone architecture, and, unique to
OpenSplice, the Shared Memory deployment mode which provides a Federated
architecture.

3.1 The Single Process or Standalone deployment
Features of this mode are:
• Simplest to run and get started with
• Each DDS application process contains the entire DDS infrastructure
• Uses in-process heap memory for the DDS database
• OpenSplice Enterprise services run as threads within the application process
• When there are multiple DDS application processes on a single machine, the

communication between them must be done via a networking service. This
induces an overhead so performance in this scenario is not optimal

Figure 1 Single Process or Standalone deployment

3.2 The Shared Memory or Federated deployment
Features of this mode are:
• The DDS infrastructure is started once per machine
• Uses shared memory for the DDS database

OpenSplice
Daemon

Networking
Service

Durability
Service

In-Process Heap Memory

DDS Application
Process

OpenSplice Service
Threads
3
 �������	

3 OpenSplice Architectural Modes 3.3 How to select the Architectural Mode

• Each DDS application process interfaces with the shared memory rather than
creating the DDS infrastructure itself

• Allows the data to be physically present only once on any machine
• Reading and writing directly to locally-mapped memory is far more efficient than

having to actually move the data via a networking service, allowing for improved
performance and scalability

• OpenSplice Enterprise services are able arbitrate over all of the DDS data on the
node, and so can make smart decisions with respect to data delivery so that
priority QoS values (for example) are respected. That is not possible when there
are multiple standalone deployments on a machine

Figure 2 Shared Memory or Federated deployment

When there are multiple DDS applications running on a single computing node, the
use of OpenSplice’s unique Shared Memory architecture can provide greater
performance, smaller footprint and better scalability than other DDS deployment
options.

3.3 How to select the Architectural Mode
• For a Single Process deployment, set the OSPL_URI variable to refer to a single

process (sp) xml file such as ospl_sp_ddsi.xml or
ospl_sp_nativeRT.xml. Note that a networking service (such as ddsi or
nativeRT) is required for two DDS application processes to communicate. See the
next section for more details on networking options.

OpenSplice
Daemon

Networking
Service

Durability
Service

Shared Memory

DDS Application
Processes

OpenSplice Service
Processes

DDS
Infrastructure
4
�������	

3 OpenSplice Architectural Modes 3.3 How to select the Architectural Mode

A single process deployment is enabled when the Domain section of the XML
configuration contains a <SingleProcess> TRUE attribute.

• For a Shared Memory deployment, set the OSPL_URI variable to refer to a shared
memory (shmem) xml file such as ospl_shmem_no_network.xml,
ospl_shmem_ddsi.xml, or ospl_shmem_nativeRT.xml. A networking
service is not required for two DDS application processes to communicate on the
same node.

A shared memory deployment is enabled when the Domain section of the XML
configuration does not contain a <SingleProcess> TRUE attribute but does
contain a <Database> attribute.

Note that by default the OSPL_URI environment variable refers to a Single Process
configuration, so to see the extra performance and scalability benefits of OpenSplice
DDS’s Shared Memory architecture it is necessary to switch from the default.
5

�������	

6
 �������	

 4 OpenSplice Networking Options
OpenSplice Enterprise provides several networking options for the delivery of DDS
data between nodes. The networking service selection is largely transparent to the
user—the difference is observed in the CPU consumption, networking load, and
ultimately how fast and efficiently the data is delivered between nodes. The most
applicable service is dependent on the requirements of the use case.
OpenSplice DDSI is the industry standard protocol providing vendor
interoperability that operates using a typed ‘pull’ style model.
OpenSplice RTNetworking is an alternative to the DDSI wire protocol.
RTNetworking uses a type-less ‘push’ style model in contrast to DDSI and is often
the more performant, scalable option. RTNetworking also offers prioritization of
network traffic via ‘channels’, partitioning to separate data flows and optional
compression for low-bandwidth environments. OpenSplice SecureRTNetworking
provides these features together with encryption and access control.
OpenSplice DDSI2E is the “enhanced” version of the interoperable service.
DDSI2E offers the benefits of the DDSI protocol (such as its automatic unicast
delivery in the case of there being a single subscribing endpoint), together with
some of the performance features of the RTNetworking service such as channels,
partitioning and encryption.

4.1 How to select the Networking Protocol
As with the architectural deployment choice, the selection of the networking service
is described by the XML configuration file. Note that this choice is independent of
and orthogonal to the architectural deployment: you can have single process or
shared memory with any of the networking service protocols.
• To run with a DDSI service, set the OSPL_URI variable to refer to a DDSI xml file

such as ospl_sp_ddsi.xml or ospl_shmem_ddsi.xml.
• To run with an RTNetworking service, set the OSPL_URI variable to refer to an

RTNetworking xml file such as ospl_sp_nativeRT.xml or
ospl_shmem_nativeRT.xml.

• To run with a SecureRTNetworking service, set the OSPL_URI variable to refer to
the ospl_shem_secure_nativeRT.xml SecureRTNetworking xml file.

• To run with a DDSI2E deployment, set the OSPL_URI variable to refer to a
DDSI2E xml file such as ospl_sp_ddsi2e.xml or
ospl_shmem_ddsi2e.xml.

Note that by default, the OSPL_URI environment variable refers to a DDSI
configuration, so to see the extra performance and scalability benefits of OpenSplice
DDS’s RTNetworking or DDSI2E it is necessary to switch from the default.

 5 Benchmarking OpenSplice:
Decision Trees

DDS provides many functional benefits that set it apart from other middleware
technologies, but users often still have specific performance requirements for
latency, throughput, CPU and network utilization. OpenSplice Enterprise provides
the functional benefits of the technology whilst remaining committed to excellent
performance.
The flowcharts overleaf show the decision criteria that may be applied in order to
decide on the most appropriate test case (Figure 3), architectural mode (Figure 4)
and networking protocol (Figure 5) options for your specific use case and
requirements.
7
 �������	

5 Benchmarking OpenSplice: Decision Trees

Figure 3 Selecting a specific performance test and programming language
8
�������	

5 Benchmarking OpenSplice: Decision Trees

Figure 4 Selecting the architectural deployment mode
9

�������	

5 Benchmarking OpenSplice: Decision Trees

Figure 5 Selecting the network protocol options
10
�������	

11
 �������	

 6 How to run OpenSplice Enterprise

6.1 The OpenSplice Enterprise Environment
A release file is provided with the OpenSplice Enterprise installation which
contains the environment variables that are required.
Create an OpenSplice Enterprise environment as follows:
Open a shell and source the release.com file from the OpenSplice Enterprise
installation directory.
Open a Windows Command prompt and run the release.bat file in the
OpenSplice Enterprise installation directory.
Alternatively, use the ‘OpenSplice DDS Command Prompt’ that can be accessed
from the Windows Start menu (this will implicitly run release.bat).
Next, set the OSPL_URI variable to refer to the OpenSplice Enterprise configuration
that is required (see section 3.3, How to select the Architectural Mode, on page 4).

6.2 Running Single Process and Shared Memory Modes
With an OSPL_URI variable referring to a Single Process deployment, you just need
to start the DDS application process. The create_participant() operation,
which is the entry into the DDS Domain, will create the entire DDS infrastructure
within the application process and the services will be started as threads.
With an OSPL_URI variable referring to a Shared Memory deployment, it is
necessary to start the DDS infrastructure before starting your DDS application
processes. That is done by using the ospl utility tool:

Linux

WIN

WIN

ospl start

now run the DDS application processes as normal

ospl stop

 7 Performance Tests and Examples
To make the evaluation process as easy as possible, OpenSplice Enterprise is
shipped with dedicated performance tests that can be used to measure latency and
throughput. The tests are simple and clear, allowing the user to obtain performance
results easily.
Performance tests are currently provided for the C++ and ISO C++ APIs.

7.1 Round Trip Latency Performance
The latency of a DDS implementation is an expression of how fast data can be
delivered between two DDS applications. Round-trip latency is the time taken for an
individual DDS data sample to be delivered from Application A to Application B
and back again, so importantly it includes metrics for both data delivery and
reception.
To build and run the round-trip performance test, for example for the ISO C++ API:

In an OpenSplice Enterprise environment:
cd $OSPL_HOME/examples/dcps/RoundTrip/isocpp
make

cd $OSPL_HOME/examples/dcps/RoundTrip/isocpp
If using shared memory do “ospl start”
./pong
If using shared memory do “ospl stop”

In another OpenSplice Enterprise environment:
cd $OSPL_HOME/examples/dcps/RoundTrip/isocpp
If using shared memory do “ospl start”
./ping 20 100
If using shared memory do “ospl stop”

Load the OpenSplice DDS examples project solution in to Visual
Studio and build the required projects

In an OpenSplice Enterprise environment:
cd %OSPL_HOME%\examples\dcps\RoundTrip\isocpp
If using shared memory do “ospl start”
pong.exe
If using shared memory do “ospl stop”

In another OpenSplice Enterprise environment:
cd %OSPL_HOME%\examples\dcps\RoundTrip\isocpp
If using shared memory do “ospl start”
ping.exe 20 100
If using shared memory do “ospl stop”

Linux

WIN
12
 �������	

7 Performance Tests and Examples 7.2 Throughput Performance

The ping application will report the roundtrip time taken to send DDS data samples
back and forth between the applications. The test utilizes the ReliabilityQoS set to
RELIABLE by default in order to show the maximal performance whilst maintaining
the guaranteed delivery of DDS samples. See the README file for the test for further
details.
The lowest roundtrip latency may be achieved by tuning the test parameters
appropriately.
Note that the default OSPL_URI value refers to a Single Process deployment with
DDSI networking.
• To observe the best performance within a node it is suggested that you use a

Shared Memory configuration.
• To observe the best performance between nodes it is suggested that you use an

RTNetworking service configuration.

7.2 Throughput Performance
The throughput of a DDS implementation is an expression of the rate of data
delivery through the DDS system. Measured in bits per second, it describes the
ability of the DDS implementation to effectively deliver DDS data without data
loss.
To build and run the throughput performance test, for example for the ISO C++ API:

In an OpenSplice Enterprise environment:
cd $OSPL_HOME/examples/dcps/Throughput/isocpp
make

cd $OSPL_HOME/examples/dcps/Throughput/isocpp
If using shared memory do “ospl start”
./publisher
If using shared memory do “ospl stop”

In another In an OpenSplice Enterprise environment:
cd $OSPL_HOME/examples/dcps/Throughput/isocpp
If using shared memory do “ospl start”
./subscriber
If using shared memory do “ospl stop”

Linux
13

�������	

7 Performance Tests and Examples 7.2 Throughput Performance

The subscriber application will report the DDS data throughput by default once
per second. This and many other aspects of the test can be configured on the
command line. The test utilizes the ReliabilityQoS set to RELIABLE by default in
order to show the maximal performance whilst maintaining the guaranteed delivery
of DDS samples. See the README file for the test for further details.
The maximum throughput may be achieved by tuning the test parameters
appropriately.
Note that the default OSPL_URI value refers to a Single Process deployment with
DDSI networking.
• To observe the best performance within a node it is suggested that you use a

Shared Memory configuration.
• To observe the best performance between nodes it is suggested that you use an

RTNetworking service configuration.

7.2.1 Achieving Maximum Throughput
Where there is a requirement to support continuous flows or ‘streams’ of data with
minimal overhead consider the use of OpenSplice Streams. The ability to deliver
potentially millions of samples per second is realized by the Streams feature
transparently batching (packing and queuing) the periodic samples.

Load the OpenSplice DDS examples project solution in to Visual
Studio and build the required projects

In an OpenSplice Enterprise environment:
cd %OSPL_HOME%\examples\dcps\Throughput\isocpp
If using shared memory do “ospl start”
publisher.exe
If using shared memory do “ospl stop”

In another OpenSplice Enterprise environment:
cd %OSPL_HOME%\examples\dcps\Throughput\isocpp
If using shared memory do “ospl start”
subscriber.exe
If using shared memory do “ospl stop”

WIN
14
�������	

7 Performance Tests and Examples 7.2 Throughput Performance

Figure 6 Streams Architecture

The streams performance example is located in the examples/streams directory
within the installation.
15

�������	

16
Evaluation Guide�������	

Bibl iography
[1] Data Distribution Service for Real-Time Systems Version 1.2, OMG

Available specification formal/07-01-01
[2] The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol

Specification Version 2.1, OMG
Document Number: formal/2009-01-05

[3] Extensible and Dynamic Topic Types for DDS Version 1.0, OMG
Document Number: formal/2012-11-10

Contacts

Web: http://www.prismtech.com
E-mail: info@prismtech.com

Copyr ight Not ice
© 2014 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.
The information contained in this document is subject to change without notice and is made available in good faith without
liability on the part of PrismTech Limited or PrismTech Corporation.
All trademarks acknowledged.

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

PrismTech France
28 rue Jean Rostand
91400 Orsay
France

Tel: +33 (1) 69 015354

http://www.prismtech.com
mailto: sales@prismtech.com

	Evaluation & Benchmarking Guide
	1 Introduction
	2 OpenSplice Enterprise Basics
	3 OpenSplice Architectural Modes
	3.1 The Single Process or Standalone deployment
	3.2 The Shared Memory or Federated deployment
	3.3 How to select the Architectural Mode

	4 OpenSplice Networking Options
	4.1 How to select the Networking Protocol

	5 Benchmarking OpenSplice: Decision Trees
	6 How to run OpenSplice Enterprise
	6.1 The OpenSplice Enterprise Environment
	6.2 Running Single Process and Shared Memory Modes

	7 Performance Tests and Examples
	7.1 Round Trip Latency Performance
	7.2 Throughput Performance
	7.2.1 Achieving Maximum Throughput

	Bibliography
	Contacts
	Copyright Notice

