
OpenSplice Automated
Testing and Debugging Tool

Version 6.x

User Guide
�������	

OpenSplice Automated
Testing and Debugging Tool
USER GUIDE
Part Number: OS-TTUG Doc Issue 07, 15 Jan 14
PRISMTECH

ii
User Guide

�������	

CONTENTS

Table of Contents
2
User Guide �������	

Table of Contents
Table of Contents
Preface

Chapter 1 Introduction 3
1.1 Features . 3
1.2 Location of Tester in the OpenSplice architecture . 3
1.3 Things to Know. 4
1.4 Prerequisites . 4

Chapter 2 Getting Started 7
2.1 Starting and Stopping Tester. 7
2.1.1 Starting - Local Connection. 7
2.1.2 Starting - Remote Connection . 8
2.1.3 Stopping. 8
2.1.4 Remotely Controlling Tester . 8
2.2 Trying out Tester . 9
2.3 Tester Windows . 9
2.3.1 Main Window . 9
2.3.2 Overview Windows . 10
2.3.2.1 Services. 11
2.3.2.2 Scripts . 11
2.3.2.3 Macros . 12
2.3.2.4 Topics . 12
2.3.2.5 Readers . 12
2.3.3 Working Windows. 13
2.3.3.1 Sample List Window . 13
2.3.3.2 Statistics Window . 13
2.3.3.3 Browser Window . 14
2.3.4 Scripting Windows . 15
2.3.4.1 Edit Window. 15
2.3.4.2 Debug Window. 15
2.3.5 Other Windows . 15
2.3.5.1 Add Reader Window . 15
2.3.5.2 Batch Window . 16
2.3.5.3 Batch Results Window . 16
2.3.5.4 Chart Window. 18
2.3.5.5 Edit Sample Window . 18
2.3.5.6 Topic Instance Window . 19
3
User Guide

�������	

Table of Contents
Chapter 3 Familiarization Exercises 21
3.1 Starting the Tester . 21
3.2 Connection management . 22
3.2.1 To Connect to a local OpenSplice instance . 22
3.2.2 To Connect to a remote OpenSplice instance . 22
3.2.3 To Disconnect . 23
3.2.4 To Exit Tester . 23
3.3 Topics and Readers . 23
3.3.1 The Topic list. 23
3.3.2 To Add a Reader from the Topic list . 23
3.3.3 To Add a Reader from the File menu . 24
3.3.4 To Add multiple Readers to the Tester timeline . 25
3.3.5 To Save the current Readers to a file. 26
3.3.6 To Remove all Readers . 26
3.3.7 To Load Readers from a saved file . 26
3.3.8 To Delete a Reader . 27
3.4 Samples . 27
3.4.1 Writing and Editing Samples. 27
3.4.1.1 To Write Sample Topic data. 27
3.4.1.2 To display detailed information on sample data. 27
3.4.1.3 To Display extra fields . 28
3.4.1.4 To Edit a sample . 29
3.4.1.5 To Compare two samples . 30
3.5 Filtering . 31
3.5.1 To Filter the Sample List on a Topic. 31
3.5.2 To Reset Filters and display all samples . 32
3.5.3 To Filter on both Topic and Key . 32
3.5.4 Filter samples on State. 32
3.5.5 To Filter Samples on Key value . 33
3.5.6 Filter on column text . 33
3.5.7 Find specific text . 33
3.6 Working with Samples . 34
3.6.1 To Delete a column from the Sample List table . 34
3.6.2 To Chart Sample Data . 34
3.6.3 To Dump a sample list to a file . 35
3.6.4 To Dump selected Samples only . 35
3.6.5 To Dump to a CSV format file . 35
3.6.6 To Dispose data with Alive state. 35
3.6.7 To Translate Sample data to test script . 36
3.6.8 Translate selected sample to test script . 36
4
User Guide �������	

Table of Contents
3.7 System Browser (Browser window) . 36
3.7.1 Browse tree . 36
3.7.2 Readers and Writers tables are updated when a new Reader is created 37
3.7.3 Readers and Writers tables are updated when a new Reader is deleted 38
3.7.4 To Check Reader and Writer compatibility. 39
3.7.5 To Show Disposed Participants from the Browser tree. 40
3.7.6 To Spawn a Tuner from the System Browser . 41
3.7.7 Statistics . 41
3.7.7.1 Statistics - participants . 42
3.7.7.2 Statistics - topics . 42
3.8 Scripting. 43
3.8.1 To Create a New Scenario . 43
3.8.2 To Create a New Macro. 43
3.8.3 To Edit an Existing Scenario or Macro . 43
3.8.4 To Save an open Scenario or Macro . 43
3.8.5 To Complete and Compile a Scenario . 43
3.8.6 Script selection. 44
3.8.7 Code completion . 44
3.9 Execute and Debug . 45
3.9.1 To Run the Current Script . 45
3.9.2 Batch execution (Batch window). 45
3.9.3 To Run a Batch Script from the Command Line. 46
3.9.4 Batch results. 46
3.9.4.1 Load batch result. 46
3.9.4.2 Scan regression folder for batch results . 47
3.9.4.3 Scan regression for specified directory. 47
3.10 Adding virtual fields . 47
3.10.1 Add virtual fields to the topic . 47
3.11 Plugins . 48
3.11.1 Install / Uninstall plugins. 48
3.12 More on Virtual fields . 50
3.12.1 Adding Virtual Fields via plugin . 50
3.12.2 Adding Virtual Fields via script . 50

Chapter 4 Command Reference 53
4.1 Introduction. 53
4.2 Menus. 53
4.2.1 File . 53
4.2.2 Script . 56
4.2.3 View. 56
4.2.4 SampleList . 57
5
User Guide

�������	

Table of Contents
4.2.5 Display. 58
4.2.6 Filter. 59
4.2.7 Editor . 59
4.2.8 Edit. 60
4.2.8.1 Keyboard-only commands . 60
4.2.8.2 Macro Recorder . 61
4.3 Lists . 61
4.3.1 Services . 61
4.3.2 Scripts . 61
4.3.3 Macros . 61
4.3.4 Readers . 61
4.3.4.1 Edit Sample Window . 62
4.3.5 Topics . 64
4.4 Windows . 64
4.4.1 Sample List Window . 64
4.4.2 Statistics Window . 66
4.4.3 Browser Window. 67
4.4.4 Edit Window . 68
4.4.5 Debug Window . 69

Chapter 5 Scripting 71
5.1 The Script Language . 71
5.1.1 A script file . 72
5.1.2 Variables . 72
5.1.2.1 Special variables . 73
5.1.3 Embedded Scripts . 74
5.1.4 Comments . 75
5.1.5 Macros . 75
5.2 The Instructions . 76
5.2.1 Send . 76
5.2.2 Dispose . 76
5.2.3 Writedispose . 76
5.2.4 Check . 76
5.2.5 Miss . 78
5.2.6 Disposed . 78
5.2.7 Mark. 78
5.2.8 Repeat . 78
5.2.9 Set . 78
5.2.10 Execute . 79
5.2.11 Log. 79
5.2.12 Message . 79
6
User Guide �������	

Table of Contents
5.2.13 Fail . 79
5.2.14 Call. 80
5.2.15 Reader . 80
5.3 Instructions for Graphs . 80
5.3.1 Graph . 80
5.3.2 Column . 81
5.4 Instructions for Flow Control . 81
5.4.1 Wait . 81
5.4.2 If. 81
5.4.3 For . 82
5.4.4 Exit. 82
5.5 Instructions for the Message Interface . 82
5.5.1 Write . 82
5.5.2 Read . 82
5.5.3 Connect . 82
5.5.4 Disconnect . 82
5.5.5 Control . 82
5.6 Installing Script Engines . 83
5.6.1 Jython. 83
5.6.2 Jruby . 83
5.6.3 Groovy . 83

Chapter 6 Message Interfaces 85
6.1 Message interfaces . 85
6.2 Getting Started with a Message Interface . 85
6.3 Types of interfaces . 88
6.3.1 Basic message interface . 89
6.3.2 Buffered message interface . 89
6.3.2.1 ADA Syntax for message definition. 89
6.3.2.2 Message ID translation . 89
6.3.2.3 Message Hooks. 90
6.3.2.4 Control functions . 90

Appendix A Scripting BNF 93
TOKENS . 93
NON-TERMINALS . 95
7
User Guide

�������	

Table of Contents
8
User Guide �������	

Preface
Preface
About the User Guide

The OpenSplice Automated Testing and Debugging Tool User Guide is intended to
provide a complete reference on how to configure the tool and use it to test
applications generated with the OpenSplice DDS software.
This User Guide is intended to be used after the OpenSplice DDS software has been
installed and configured according to the instructions in the OpenSplice Getting
Started Guide.

Intended Audience
This OpenSplice Automated Testing and Debugging Tool User Guide is for
everyone using the tool (which is usually referred to as the Tester) to assist in
developing and debugging their DDS applications with OpenSplice DDS software.

Organisation
Chapter 1, Introduction, provides general information about the Automated Testing
and Debugging Tool.
Chapter 2, Getting Started, gives an introduction to the use of the Tester, with
descriptions of the main features.
Chapter 3, Familiarization Exercises, shows how to perform some typical tasks with
step-by-step instructions.
Chapter 4, Command Reference has a complete list of all the commands available.
Chapter 5, Scripting describes how to automate repetitive testing procedures with
scripts and macros, provides a list of all of the built-in script instructions, and shows
how different scripting languages can be installed and used with the Tester.
Chapter 6, Message Interfaces has information about testing applications with
non-DDS interfaces.
Appendix A, Scripting BNF, contains the complete Scripting BNF listing for
reference.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding this User Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.i
9
User Guide

�������	

Preface
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix-based systems (e.g. Solaris) only.
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Cross-references such as ‘see Contacts
on page 11’ act as hypertext links: click on the reference to jump to the item.

Courier fonts indicate programming code, commands, file names, and values
stored in variables and fields.
Extended code fragments and log file contents are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Sans-serif and Sans-serif Bold are used to indicate components of a Graphical
User Interface (GUI) or an Integrated Development Environment (IDE), such as a
Cancel button, and sequences of actions, such as selecting File > Save from a menu.
The names of keyboard keys are shown in SANS-SERIF SMALL CAPS, e.g. RETURN.
(Combinations of keys to be pressed simultaneously have their names joined with a
‘plus’ sign: CTRL+C and CTRL+ALT+DELETE.) Names of navigation keys and keys on
the numeric pad are spelled out (e.g. LEFT, DOWN, PLUS, MINUS).
Angle brackets < > enclosing code, command arguments, and similar types of text
strings, are used to indicate ‘placeholders’ to be replaced by user-supplied values.

Step 1: One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of a computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

WIN
UNIX
10
User Guide

�������	

Preface
Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
11
User Guide

�������	

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

Preface
12
User Guide

�������	

USING AUTOMATED
TESTING AND

DEBUGGING TOOL

2
Using Automated Testing and Debugging Tool

�������	

1 Introduction 1.1 Features

CHAPTER

1 Introduction
This chapter provides a brief introduction to the Tester.

1.1 Features
The OpenSplice Automated Testing and Debugging Tool provides an easy way of
displaying messages produced in OpenSplice and also provides means to publish
messages manually or with a script.
(The OpenSplice Automated Testing and Debugging Tool is usually referred to as
Tester; the name ospltest is used when referring to the executable program.)
This tool is made with the software tester, and the way he performs his job, in mind.
A pre-defined list of topics of interest can be provided. For all topics a reader is
created in the correct partition. Once started, the tool receives all instances of the
topics of interest and will display them in the sample list in the order they were
produced (using the source time stamp). This makes it very easy to see when topics
are produced and in what order. It also provides feedback about unexpected updates.
Other features of Tester include the ability to:
• dump a selection of topic(s) to a file
• dump all logged topic instances to a file
• filter the sample list based on key
• filter the sample list based on key and topic name
• filter the sample list based on key
• create a script with a selection of previously sent or received topics
• compare topic samples
• edit topic samples and then write them or dispose the topic instance
• create new topic samples and write them or dispose the topic instances

1.2 Location of Tester in the OpenSplice architecture
Tester is complementary to OpenSplice Tuner (ospltun). Tuner supports ‘white
box’ application monitoring and tuning, and Tester supports ‘black box’ system
testing, debugging, data capture, analysis, and visualization.
3
Using Automated Testing and Debugging Tool�������	

1 Introduction 1.3 Things to Know

1.3 Things to Know
NOTE: Tester uses the internal Control & Monitoring (C&M) API for access to
OpenSplice. At this time Tester only supports OpenSplice DDS systems.
Tester can be used both locally (via shared memory or single process) and/or
remotely (via a SOAP connection to the SOAP service).
Tester uses a periodic poll to read data (the default poll period is 250 ms). The
normal restrictions for storage scope apply (only keys defined with the topic
separate topics for reading, if topics with the same key are produced within a polling
period, then only the last topic is read).
Tester uses the default QoS for writing (as provided by the first application which
registers the topic) and the weakest QoS for reading. However when specifying the
topic in add topic(s) or in the topic file the QoS can be given, this QoS must be
compatible with the topic QoS as defined when the topic was registered.
NOTE: In order for the Tester system browser to correctly show the complete
system, OpenSplice Durability services have to be properly configured so that the
transient ‘built-in-topics’ are properly aligned when new nodes join the system.
Monitoring the built-in topic sample set on different nodes will quickly reveal any
failure in correct lining-up of transient data (in which case there will be different
sets visible on different nodes). Monitoring the DCPSHeartbeat built-in topic will
reveal fundamental connectivity issues in your system (you should see as many
unique heartbeats as there are interconnected nodes in the system).

1.4 Prerequisites
Tester is included in the standard OpenSplice installation.
Tester’s minimum system requirements are the same as for OpenSplice itself; please
refer to the Release Notes for both Tester and OpenSplice for details. The
OpenSplice DDS Getting Started Guide contains additional information about
installation and configuration on various systems.
Note that to compile plugins you will also need to have ant and JDK1.6 installed
(see Section 6.2, Getting Started with a Message Interface, on page 85).
Tester has been implemented in the Java Language, and it uses the OpenSplice
Command and Management (C&M) API.
Although Tester uses the C&M API, it doesn’t depend on a locally installed or
running instantiation of OpenSplice. It can operate either ‘co-located’ with a
running DDS target system, or it can operate in ‘remote-connection’ mode (like the
Tuner).
4
Using Automated Testing and Debugging Tool

�������	

1 Introduction 1.4 Prerequisites

When Tester is run on the same platform as OpenSplice, it uses the OSPL_HOME
environment variable to find the necessary OpenSplice library files. It also uses
OSPL_URI as its default OpenSplice configuration.
When Tester connects to a remote ‘target’ platform using SOAP it doesn’t use any
local environment variables, it just needs to be installed on the machine where you
run it.
(Note that the OpenSplice Tuner can be started with a -uri command-line
parameter (see Section 2.1.2, Starting - Remote Connection). This is a new feature
that is actually used by the Tester in the system browser, where you can spawn a
Tuner (see Section 3.7.6, To Spawn a Tuner from the System Browser, on page 41)
that then connects to the node/application that the browser is pointing to.)
5
Using Automated Testing and Debugging Tool�������	

1 Introduction 1.4 Prerequisites

6
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.1 Starting and Stopping Tester

CHAPTER

2 Getting Started
This chapter describes how to use the Tester’s main features.

2.1 Starting and Stopping Tester
Tester may be started by running the OpenSplice Tester application or from a
command prompt and oslptest with the following command line arguments:

(These preferences can also be set via File > Preferences.)

2.1.1 Starting - Local Connection
On Windows, use either of the shortcuts created by the installer (on the desktop and
in Start > Programs) to start Tester.
On Linux go to the installation directory and execute the command:

This will start Tester with separate windows.

-? or -help Display the command line options
-ns No splash screen
-uri <uri> URI to connect
-nac No auto-connect upon application start
-s <path to script> Script to run
-b <path to batch file> Batch script to run
-noplugins Do not process plugins
-plugindir <dir> Extra plugin directory to search
-headless Run script or batch script without the GUI
-rc <port> Enable remote control (via <port>)
-dsl <language> Default script language
-l <path to topic file> Load topics from file

% ospltest

WIN

UNIX
7
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.1 Starting and Stopping Tester

2.1.2 Starting - Remote Connection
To connect to a remote platform, execute the command:

(Port number 50000 is the default port in a standard DDS shared-memory
deployment.)

2.1.3 Stopping
Stop Tester either by using the menu option File > Exit or by clicking on the main
window ‘close’ button .

2.1.4 Remotely Controlling Tester
Starting Tester in remote control mode e.g. "ospltest -rc <port>
-headless" allows Tester to be controlled from another application, shell script,
etc.
Use cases for remote control include:
• Using Tester in combination with a commercial or proprietary test system;
• Within a continuous build and test environment this would provide more options

to control DDS testing in combination with other application-specific testing;
• In an integrated development environment like Eclipse using Junit for testing.
A Tester instance is controlled via a TCP/IP connection. Text-based commands are
sent over this connection.
The remote control application can be used by executing the command:

ospltestrc [-p <port>] [-h <host>] <command>

where
<host> is the host name of the machine that the Tester you wish to control is

running on
<port> is the port that Tester is listening on (specified by the -rc option when

Tester was started)
<command> is the command to send to Tester.
The remote control commands are:

% ospltest -uri http://perf1.perfnet.ptnl:50000

stop terminate the Tester instance
batch <batch name> execute the batch with <batch name>
script <script name> execute the script with <script name>
8
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.2 Trying out Tester

When a command is completed the following is reported on a single line:
Done

When a batch is executed, for each scenario two lines are returned to the test
controller:

Scenario: <index> of <count> execute: <scenario name>
Scenario: <index> result: <result>

2.2 Trying out Tester
Once you have started Tester, you can get a feeling for how to use it with a few
simple exercises:
• Create a default reader for some of the registered topics.
• Double-click one of the samples and see all the fields of the topic.
• Browse through the list of samples using the arrow keys.
• Select a topic in the sample list and press F9, then select a field for display in the

sample list.
• Select another topic (it need not be of the same type as the one displayed in the

topic instance window) and press F2 for a comparison between the two topics.
• Select a topic in the sample list or in the topic list and press F4, then in the Write

topic window set the fields to the desired value and write or dispose the topic.
• Choose File > Dump on the sample list and save the information of the topic

samples in the sample list to a file.
• Have a try with the scripting, it can make your life a lot easier (especially with

recurring tasks).
The rest of this chapter describes the features that you will use when you try these
exercises.

2.3 Tester Windows
2.3.1 Main Window

Once started Tester presents the user with the following main window.

scenario <scenario> execute a scenario which is provided in full text
on a single line (new lines "\n" are replaced by
" ")

connect <optional uri> connect to a specified or the default Domain uri
disconnect
9
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

Figure 1 Tester main window

The Command Menu (below) provides direct access to most of the Tester
capabilities.

Figure 2 Tester command menu

The Tester main window has three sub-frames:
1. Main tabbed frame for selecting items from a list, such as topics, scenarios, and

readers or writers.
2. Working area frame where you will do most of your work such as editing

scenarios, investigate samples, and capturing statistics
3. Debug frame used to debug scripts and macros.

2.3.2 Overview Windows
The user can select the type of resource to work with by selecting tabs. These can be
the Services and Topics in the system, the Scripts and Macros they have installed, or
the Readers for the current Tester timeline.
10
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.3 Tester Windows

Figure 3 Tester resource tabs

2.3.2.1 Services
Lists the installed services. This is a read-only list.

Figure 4 Tester Services list

2.3.2.2 Scripts
The script list provides a convenient way of selecting an existing script for editing
or execution. The list is filled at startup or when clicking the Refresh button. All
files in the specified script directory are added to the list. The script directory (or
directories) are specified in the preference page.
A script can be selected in the script editor by single-clicking the entry in the table.
When the entry is double-clicked the script is loaded in the script editor and
executed.

Figure 5 Tester scripts tab
11
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

2.3.2.3 Macros
The Macros List is similar to the Scripts List.

Figure 6 Tester macros tab

2.3.2.4 Topics
The topics list displays the list of registered topics.

Figure 7 Tester topics tab

2.3.2.5 Readers
The readers list displays the readers (and implicit topic writers) for the current
Tester timeline. The default name for a reader is the same as the name of the topic it
is subscribed to. For each reader the count of received samples (as available in the
sample list) is displayed. A check box is provided for changing the read state or the
show state. When Read is unchecked the reader stops reading topics. When Show is
unchecked the topic of that topic will not be displayed in the sample list.
12
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.3 Tester Windows

Figure 8 Tester readers tab

2.3.3 Working Windows
These windows support testing activities.

2.3.3.1 Sample List Window
Used to view and generate samples for the current timeline (Readers).

Figure 9 Sample list window

2.3.3.2 Statistics Window
The statistics window provides statistics for the topics in use, like write count,
number of alive topics, etc.. Statistics are gathered from the local copy of
OpenSplice. To gather statistics from remote nodes, use OpenSplice Tuner.
13
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

Figure 10 Statistics window

2.3.3.3 Browser Window
The browser window provides information about nodes, executables, participants
(applications), readers, writers and topics. Information can be browsed by selecting
a node/executable participant or a topic. When an executable or participant is
selected the reader and writer lists (subscribed and published topics) for that
executable/participant are shown. Together with the topic name concise information
about the QoS and partition is shown. When the mouse cursor is hovered over the
QoS value the hint will show detailed information about the QoS.
When a topic is selected the list of participant readers (subscribe) and writers
(publish) are shown, together with concise information about the QoS and partition.
By selecting a row in either the reader of writer list the compatible readers/writers
will be shown in green and non compatible (by QoS/partition) readers/writers will
be shown in red.

Figure 11 Tester browser window
14
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.3 Tester Windows

2.3.4 Scripting Windows

2.3.4.1 Edit Window
The script window is used for editing scripts. The editor supports syntax
highlighting, auto-completion, and more.

Figure 12 Script editing window

2.3.4.2 Debug Window
The debug window displays compile and execution results. Details can be filtered.
Positive results are highlighted with green, negative results are highlighted with red.

Figure 13 Debug window

2.3.5 Other Windows
The following dialog windows will be used.

2.3.5.1 Add Reader Window
Used to create/define a new Reader.
15
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

Figure 14 Add Reader dialog

2.3.5.2 Batch Window
Used to Start a batch scenario and display the test results.

Figure 15 Batch Execute Scenarios window

2.3.5.3 Batch Results Window
Displays the detailed results of a batch of scripts. Detailed individual test result can
be viewed by double clicking on a test result
16
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.3 Tester Windows

Figure 16 Batch results window

Figure 17 Detailed Batch results log
17
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

2.3.5.4 Chart Window
Used to plot topic field values.

Figure 18 Topic field values graph

2.3.5.5 Edit Sample Window
Used to create samples for a selected topic.

Figure 19 Edit sample window
18
Using Automated Testing and Debugging Tool

�������	

2 Getting Started 2.3 Tester Windows

2.3.5.6 Topic Instance Window
The topic sample window is used for displaying field values of a topic. It can be
opened by double-clicking a sample in the sample list or by pressing F3 (additional)
or F2 (additional with compare) in the sample list while a sample is selected. Special
fields are highlighted with colors:

When a field is selected, CTRL+H will toggle between normal and hexadecimal
representation, and CTRL+D will toggle between normal and degrees/radians
representation.

Key field (Green)
Foreign key (Yellow)
Different (compare only) (Red)
Not existing (compare only) (Orange)
19
Using Automated Testing and Debugging Tool�������	

2 Getting Started 2.3 Tester Windows

20
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.1 Starting the Tester

CHAPTER

3 Familiarization Exercises
This chapter gives step-by-step instructions for using the Tester to perform many
typical tasks to help you bcome familiar with the way it operates.
The exercises in this chapter assume that OpenSplice and the Tester have been
succesfully installed. These illustrations make use of the example data supplied with
the product.

3.1 Starting the Tester
OpenSplice must already be running before you start the Tester.

Step 1: Start OpenSplice DDS
Step 2: Start the Tester :

• On Linux, run ospltest.
• On Windows, choose OpenSplice DDS Tester from the Start menu (see Figure

20 below) or run ospltest from the OpenSplice DDS command prompt.

Figure 20 Starting Tester

UNIX

WIN
21
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.2 Connection management

3.2 Connection management
When it starts the Tester will automatically try to establish a connection to a running
instance of OpenSplice using the default URI. You can also make or break
connections from the main window by following the steps given below.
The command line option -nac stops tester from making a connection at startup,
and with the -uri command line option a connection to an alternative URI can be
made at startup.

3.2.1 To Connect to a local OpenSplice instance
Step 1: Choose File > Connect.
Step 2: Set the path or Browse to the configuration file (e.g., file://<OpenSplice

install dir>/etc/config/ospl.xml).
Step 3: Click the OK button.

Figure 21 Connecting to a local OpenSplice instance

3.2.2 To Connect to a remote OpenSplice instance
Step 1: Choose File > Connect.
Step 2: Enter the URI for the remote OpenSplice system (e.g.,

http://127.0.0.1:8000).
NOTE: The port number must be set to the port number as configured for the
SOAP service of the remote OpenSplice instance.

Step 3: Click the OK button.
22
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.3 Topics and Readers

Figure 22 Connecting to a remote OpenSplice instance

3.2.3 To Disconnect
Step 1: Choose File > Disconnect.

3.2.4 To Exit Tester
Step 1: Choose File > Exit or click the Close button on the Tester main window.

3.3 Topics and Readers
Tester can subscribe to multiple topics. These Readers will comprise a timeline for
testing. Samples of those topics are automatically read and displayed in the Sample
List. Tester readers can also be used to write or edit samples.

3.3.1 The Topic list
Check the Topic list. Make sure that the Tester is connected to the default URI.

3.3.2 To Add a Reader from the Topic list
Step 1: Select the Topics tab.
Step 2: Right-click OsplTestTopic.
23
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.3 Topics and Readers

Figure 23 Create Readers from the Topics list

Step 3: Choose Create Default Reader from the pop-up menu. The reader will
automatically be named the same as the topic.

Step 4: Choose Create Reader and modify the (writer) QoS or reader name if desired.
Step 5: Click Add.

Figure 24 Create myReader

Step 6: Open the Readers tab and you will see the readers you just created.

3.3.3 To Add a Reader from the File menu
Step 1: Select the Readers tab.
24
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.3 Topics and Readers

Step 2: Choose File > Add Reader.
Step 3: Select OsplTestTopic from the drop-down list.
Step 4: Click Add.

Figure 25 Adding a Reader from the File menu

3.3.4 To Add multiple Readers to the Tester timeline
Step 1: Choose File > Add Readers.
Step 2: Type ospl in the filter field to limit the list of topics. Select OsplArrayTopic and

OsplSequenceTopic.
Step 3: Click Add.

1: Choose File > Add Reader
25
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.3 Topics and Readers

Figure 26 Adding multiple Readers

3.3.5 To Save the current Readers to a file
If you need to preserve the Readers for a timeline, you can save the current Readers
list.

Step 1: Choose File > Save Readers List.
Step 2: Enter a name for the new file.
Step 3: Click Save.

3.3.6 To Remove all Readers
Step 1: Choose File > Remove all Readers.

3.3.7 To Load Readers from a saved file
Step 1: Choose File > Load Readers List.
Step 2: Select the name of the saved file.
Step 3: Click Load.

1: Choose File > Add Readers

2: Select topic

3: Click Add
26
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.4 Samples

3.3.8 To Delete a Reader
Step 1: Select OsplTestTopic reader from the list.
Step 2: Press the DELETE key or right-click on OsplTestTopic and choose Delete Reader

from the pop-up menu.

3.4 Samples
3.4.1 Writing and Editing Samples

3.4.1.1 To Write Sample Topic data
Step 1: Select OsplTestTopic reader from the list.
Step 2: Press F4 or choose Edit Sample from the pop-up menu.
Step 3: Enter following values for the fields in the list:

id: 0
t: 1, x: 1, y: 1, z: 1

Figure 27 Entering sample topic data

Step 4: Click the write button.
Step 5: Close the Edit Sample window.

3.4.1.2 To display detailed information on sample data
Step 1: Double-click on the first OsplTestTopic sample in the Sample List window.
27
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.4 Samples

Figure 28 Display detailed sample data information

3.4.1.3 To Display extra fields
By default the Sample List displays topic-independent fields. You can add
topic-specific fields as follows:

Step 1: Select any sample.
Step 2: Press F9 or right-click and choose Select Extra Fields from the pop-up menu.
Step 3: Click to select (‘check’) x, y, z and t.
28
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.4 Samples

Figure 29 Selecting extra fields to display

Step 4: Click OK.
The selected fields will be added to the Sample List.

Figure 30 New fields added

3.4.1.4 To Edit a sample
Step 1: Select the first sample.
29
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.4 Samples

Step 2: Press F4 or choose Edit Sample from the pop-up menu.
Step 3: Enter following values in the fields:

id: 0, x: 1, y: 2, z: 1, t: 1
Step 4: Click Write.
Step 5: Enter following values in the fields:

id: 0, x: 1, y: 4, z: 2, t: 1
Step 6: Click Write.
Step 7: Enter following values in the fields:

id: 0, x: 1, y: 8, z: 3, t: 1
Step 8: Click Write.
Step 9: Enter following values in the fields:

id: 1, x: 1, y: 8, z: 4, t: 1
Step 10:Click WriteDispose.

3.4.1.5 To Compare two samples
Step 1: Double-click the sample with the values id: 0, x: 1, y: 4, z: 2, t: 1.
Step 2: Select the sample with the values id: 0, x: 1, y: 8, z: 3, t: 1.
Step 3: Press F2 or choose Compare Samples from the pop-up menu.
30
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.5 Filtering

Figure 31 Comparing samples

3.5 Filtering

Figure 32 Filtering: un-filtered Topic list

3.5.1 To Filter the Sample List on a Topic
Step 1: Select the OsplTestTopic sample.
Step 2: Press F5 or choose Filter on Topic from the pop-up menu.
31
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.5 Filtering

Figure 33 Sample List filtered by Topic

3.5.2 To Reset Filters and display all samples
Step 1: Press F7 or choose Reset filter from the pop-up menu or click the Reset button on

the Sample List window.

3.5.3 To Filter on both Topic and Key
Step 1: Select OsplTestTopic with id(key): 1.
Step 2: Press F5 or choose Filter on topic and key from the pop-up menu.

Figure 34 Sample List filtered by Topic and Key

3.5.4 Filter samples on State
Step 1: Select a sample with a State of SEND AND ALIVE.
Step 2: Choose Filter on State from the pop-up menu.

Figure 35 Sample List filtered by State
32
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.5 Filtering

3.5.5 To Filter Samples on Key value
Step 1: Select OsplTestTopic with id(key): 0.
Step 2: Choose Filter on key from the pop-up menu.

Figure 36 Sample List filtered by Key value

3.5.6 Filter on column text
Step 1: Select the State column of any sample.
Step 2: Choose Filter on column text from the pop-up menu.
Step 3: Type in ‘send’.
Step 4: Press the ENTER key.

Figure 37 Sample List filtered by column text

3.5.7 Find specific text
Step 1: Press CTRL+F to open the Find dialog.
33
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.6 Working with Samples

Figure 38 The Find dialog

Step 2: Type in the text to search for, and select any of the options if required.
Step 3: Click Find. The first occurrence of the search text is highlighted.
Step 4: Click Find again to find the next occurrence of the search text.

3.6 Working with Samples
3.6.1 To Delete a column from the Sample List table

Step 1: Select the x column of any sample.
Step 2: Press the DELETE key.

Figure 39 Column deleted from Sample List display

3.6.2 To Chart Sample Data
Using any list of samples:

Step 1: Select the z column of any sample and press the X key.
Step 2: Select the y column of any sample and press the Y key.
Step 3: Choose SampleList > Show Chart or press ALT+SHIFT+C to display the chart.
34
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.6 Working with Samples

Figure 40 Chart of Sample data

3.6.3 To Dump a sample list to a file
Step 1: Choose SampleList > Dump.
Step 2: Enter a name for the file to save.
Step 3: Click Save.

3.6.4 To Dump selected Samples only
Step 1: Select OsplTestTopic with key: 1.
Step 2: Choose SampleList > Dump Selection.
Step 3: Enter a name for the file to save.
Step 4: Click Save.

3.6.5 To Dump to a CSV format file
Step 1: Choose SampleList > Dump to CSV.
Step 2: Enter a name for the file to save.
Step 3: Click Save.

3.6.6 To Dispose data with Alive state
Step 1: Choose SampleList > Dispose Alive.
35
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Figure 41 Disposing data with ‘Alive’ state

3.6.7 To Translate Sample data to test script
Step 1: Choose SampleList > Diff Script.

The Scripting commands to replicate all of the sample data will be inserted into the
current scenario in the Edit window.

3.6.8 Translate selected sample to test script
Step 1: Select a set of samples.
Step 2: Choose SampleList > DiffScript Selection.

The Scripting commands to replicate this subset of the sample data will be inserted
into the current scenario in the Edit window.

3.7 System Browser (Browser window)
3.7.1 Browse tree

The System Browser is used to examine the Nodes, Participants, and Topics in your
system using a tree paradigm.

Step 1: Choose View > Browser or click the Browser tab of the main window.
Step 2: Expand the all tree.
Step 3: Select Tester participant from the Browser tree. Note that your own Tester is

highlighted in yellow in the tree.
All participants
- OpenSplice Tester

Step 4: Select Built-in participant from
Nodes
 + <your machine name>
 + java.exe
 - Built-in participant

Step 5: Select Build-in participant from

36
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Nodes
 + <your machine name>
 + java.exe
 - ddsi2

Step 6: View readers and writers of durability service. Select Build-in participant from
Nodes
 + <your machine name>
 + java.exe
 - durability

Step 7: View readers and writers of splicedaemon. Select Build-in participant from
Nodes
 + <your machine name>
 + java.exe
 - splicedaemon

Figure 42 Browser window

(The red boxes in the illustration indicate the current Open Connection.)

3.7.2 Readers and Writers tables are updated when a new Reader is created
Step 1: Open the Browser window.
Step 2: Select OpenSplice Tester participant from the All participants tree.
37
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Step 3: Create a new OsplTestTopic reader (see section 3.3.2, To Add a Reader from the
Topic list, on page 23, for instructions).

Step 4: The Readers and Writers table will be updated.

Figure 43 Readers and Writers table updated

3.7.3 Readers and Writers tables are updated when a new Reader is deleted
Step 1: Open the Browser window.
Step 2: Select the OpenSplice Tester participant from the All participants tree.
Step 3: Delete the existing OsplTestTopic reader.
Step 4: The deleted reader will be highlighted with orange to indicate that the reader is

disposed.
38
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Figure 44 Reader deleted

3.7.4 To Check Reader and Writer compatibility
Step 1: Choose Create Reader from the pop-up menu from OsplTestTopic.
Step 2: Enter boo for the name and boo_partition for the partition.
Step 3: Create another reader with hoo for the name and hoo_partition for the partition.
Step 4: Choose Create Default Reader to create a default reader.
Step 5: Open the Browser window and select Topics/OsplTestTopic from the browser tree.
Step 6: Select a Reader with * partition from the Readers table.

Figure 45 Reader with ‘*’ partition selected

Step 7: Select a Reader with boo partition from the Readers table.

39

Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Figure 46 Reader with ‘hoo’ partition selected

Step 8: Select a Reader with hoo partition from the Readers table.

Figure 47 Reader with ‘boo’ partition selected

In the Browser window, Readers/Writers are highlighted with red to indicate
incompatibility with the selected Writer/Reader (yellow).

3.7.5 To Show Disposed Participants from the Browser tree
Step 1: Open the Browser window.
Step 2: Select (check) Show disposed participants.
Step 3: Expand the Nodes tree.
Step 4: Expand the All participants tree.
Step 5: De-select (un-check) Show disposed participants.

i

40
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Figure 48 Disposed participants

3.7.6 To Spawn a Tuner from the System Browser
Any domain participant that is part of a configuration that includes a SOAP service
should have the Start Tuner pop-up menu.

Step 1: Connect Tester using the ospl_sp_ddsi_statistics.xml configuration file in
the etc/config directory. (See section 3.2.1, To Connect to a local OpenSplice
instance, on page 22.)

Step 2: Open the Browser window.
Step 3: Expand the Nodes tree.
Step 4: Right-click on the OpenSplice Tester participant.
Step 5: Choose Start Tuner from the pop-up menu.

3.7.7 Statistics
First, connect Tester using the ospl_sp_ddsi_statistics.xml configuration
file in the etc/config directory. (See section 3.2.1, To Connect to a local
OpenSplice instance, on page 22.) (Note that statistics can only be gathered from
the Tester process.)
41
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.7 System Browser (Browser window)

Figure 49 The Statistics window

3.7.7.1 Statistics - participants

3.7.7.1.1 Write sample topics and check statistics window content
Step 1: Create a default reader for OsplTestTopic.
Step 2: Write four samples.
Step 3: Open the Participant tab of the Statistics window.
Step 4: Select the OpenSplice Tester participant from the list.

3.7.7.2 Statistics - topics

3.7.7.2.1 Write sample topics and check statistics window content
Step 1: Create a default reader for OsplTestTopic.
Step 2: Write four samples.
Step 3: Open the Topics tab of the Statistics window.
Step 4: Select OsplTestTopic from the list.
42
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.8 Scripting

3.8 Scripting
3.8.1 To Create a New Scenario

Note that you can only have one scenario open at a time. To avoid losing changes in
the current scenario you must save it (see section 3.8.4 below) before creating a new
scenario or selecting a different one from the drop-down list of recently-used
scenarios (next to the Clear and Execute button).

Step 1: Choose Editor > New Scenario to create a new scenario and open it in the editor, or
if the Editor window is already open, press CTRL+N to create and open a new
scenario. A warning is displayed if there are unsaved changes in the current
scenario.

Step 2: In the File Save dialog that appears, specify the location of the new scenario and
give it a name.

3.8.2 To Create a New Macro
Step 1: Choose Editor > New Macro to create a new macro and open it in the editor, or if

the Editor window is already open, press CTRL+M to create and open a new macro.
You can have multiple macros open at the same time. Use the drop-down list next to
the Clear and Execute button to see or select them.

Step 2: In the File Save dialog that appears, specify the location of the new macro and give
it a name.

3.8.3 To Edit an Existing Scenario or Macro
Step 1: Choose Editor > Open from the top menu.
Step 2: In the dialog that appears, type in or browse to the location of the macro or scenario

you wish to open, then click Open.

3.8.4 To Save an open Scenario or Macro
Save the current scenario or macro.

Step 1: Choose File > Save from the top menu or press CTRL+S.
Step 2: If the scenario or macro has been saved before, then it is immediately saved,

over-writing the previous version.
Step 3: If the scenario or macro has not been saved before, a Save As... dialog appears; type

in or browse to an appropriate location and enter a name for the scenario or macro,
the click Save.

3.8.5 To Complete and Compile a Scenario
This function ‘wraps’ the current text in the Edit window with ‘scenario’ and ‘end
scenario’.
43
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.8 Scripting

Complete is only used when a new scenario is created without a template, from
DiffScript or the Write button in a sample editor. Compile is only needed when you
do not want to execute, but just check the syntax.

Step 1: Choose Edit > Complete from the top menu.
Step 2: Click the Compile button.
Step 3: Click the Execute button.
Step 4: Click the Clear and Execute button.

3.8.6 Script selection
Step 1: 1. Expand the Script Selection drop-down list of recently-used scripts near the Clear

and Execute button.

3.8.7 Code completion
The Tester has a ‘code completion’ function which reduces the amount of typing
that you have to do reduces the chances of errors. For example, you can press the
CTRL+SPACE keys after you have typed the first few characters of a reader name and
the Tester will display a list of the names of the readers which start with the same
characters and you can choose the one you want.
Assuming that the OsplTestTopic reader already exists, and that a new script is
open in the Edit tab:

Step 1: Complete the current scenario by choosing Editor > Complete from the top menu.
(Note that it is generally preferable to start from a template.)

Step 2: Type ‘send Ospl’ then press CTRL+SPACE.
Step 3: ‘OsplTestTopic’ appears; press ENTER to accept it, and the instruction is completed.

This also pops up the sample editor, enabling you to set the arguments. The sample
editor can also be activated by CTRL+SPACE when the cursor is in the instruction, or
CTRL+LEFT-CLICK on the instruction.

Figure 50 Code completion (send)

Step 4: Type ‘check Ospl’ then press CTRL+SPACE.
Step 5: ‘OsplTestTopic’ appears; press ENTER to accept it, and the instruction is completed.
44
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.9 Execute and Debug

Figure 51 Code completion (check)

3.9 Execute and Debug
3.9.1 To Run the Current Script

Step 1: Click the Execute (‘Play’) button in the Debug window to run the current script.
Step 2: While the script is still executing, click the ‘Pause’ button in the Debug window.
Step 3: While the script is still executing, click the ‘Stop’ button in the Debug window.
Step 4: In the Debug window, double-click the entry where the column Location has a value

of 6. Double-clicking on an entry in the Debug window highlights the relevant line
in the Editor window.

Figure 52 Debugging a script

3.9.2 Batch execution (Batch window)
Load and run batch scenario.

Step 1: Choose Script > Batch from the top menu.
Step 2: In the Batch window, choose File > Load batch.
Step 3: Select batch.bd in the example script directory.
Step 4: Click the Start button.
45
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.9 Execute and Debug

Figure 53 Batch execution

3.9.3 To Run a Batch Script from the Command Line
Step 1: Change directory to the example scripts directory where the batch.bd is found

(<OSPL_HOME>/examples/ ...).
Step 2: Run ospltest -e -b batch.bd.

3.9.4 Batch results

3.9.4.1 Load batch result
Step 1: Choose Scripts > Batch results from the top menu.
Step 2: With the Batch results window open, choose File > Load result from the top menu.
Step 3: Select the batch result file from the batch run.
46
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.10 Adding virtual fields

Figure 54 Batch results

3.9.4.2 Scan regression folder for batch results
Step 1: Choose File > Scan Regression from the top menu.
Step 2: Double-click the test result column of any test.

The results displayed will appear similar to the example in Figure 54.

3.9.4.3 Scan regression for specified directory
Step 1: Choose File > Scan Regression dir from the top menu.
Step 2: Select the directory (folder) that contains batch results.

The results displayed will appear similar to the example in Figure 54.

3.10 Adding virtual fields
Virtual fields are fields with calculated values. For example, a translation from
radians to degrees, or from cartesian to polar coordinates. The virtual field can be
provided in Java (inside a plugin, see section 3.11, Plugins, on page 48) or a script
language (see Chapter 5, Scripting, on page 71, and the following example).

3.10.1 Add virtual fields to the topic
Step 1: Choose File > Add fields from the top menu.
Step 2: Browse to the example directory and select fields.txt.
Step 3: Open the SampleList window.
Step 4: Select the OsplTestTopic sample.
Step 5: Add extra fields from the pop-up menu.
47
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.11 Plugins

Figure 55 Adding extra fields to a sample

3.11 Plugins
Plugins can extend the functionality of Tester by providing virtual fields (see section
3.10, Adding virtual fields, on page 47), or additional interfaces. Plugins are
automatically loaded upon startup from the specified plugin directory. Two sample
plugins are provided with Tester: SimplePlugin adds virtual fields, and
TestInterface adds a UDP/IP message interface (see Chapter 6, Message
Interfaces, on page 85).

3.11.1 Install / Uninstall plugins
Step 1: Go to the examples/tools/ospltest/SimplePlugin directory.
Step 2: Run ant from the command console to build the SimplePlugin example.
Step 3: Run Tester and choose File > Preference from the top menu.
Step 4: In the Settings tab set the correct value for Plugins dir and click OK.

Figure 56 Setting the path to the Plugins directory

Step 5: Choose File > Plugins from the top menu.
Step 6: Click SimplePlugin to select it.
48
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.11 Plugins

Figure 57 The SimplePlugin example

Step 7: Double-click any OsplTestTopic data in the SampleList window. New fields are
added.

Figure 58 Fields added to OsplTestTopic sample
49
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.12 More on Virtual fields

Step 8: In the Select extra field dialog (F9), one more field is added.

Figure 59 Extra field added

3.12 More on Virtual fields
Additional virtual fields can be provided via a plugin or via a script.

3.12.1 Adding Virtual Fields via plugin
Override the class:

ExtraTopicField

Compile this class in a plugin and in the ‘install’ function register the extra fields
with:

connection.registerExtraField(<instance of extra topic
field class>);

An example of a plugin with an extra field is provided in examples:
<OSPL_HOME>/examples/tools/ospltest/plugins/SimplePlugin

3.12.2 Adding Virtual Fields via script
A script file can be loaded using the top menu: File > Add Fields.
The script file has the following syntax:

The language description is optional. 1 to n fields can be described in a single file.

[#!<language>]
<name of the field>
<name of the applicable topic>
<script which returns a value and can have multiple lines>
next_field
<name of the field>
<name of the applicable topic>
<script which returns a value and can have multiple lines>
50
Using Automated Testing and Debugging Tool

�������	

3 Familiarization Exercises 3.12 More on Virtual fields

The data of the sample is available in an object variable which is pushed to the script
engine before the execution of the script. The object sample provides the following
functions:

These functions can be used to retrieve data from the current sample and determine
the value for the extra field. An example of a script file is provided in
examples/tools/ospltest/fields.txt.

String getDayTime();
long getTime();
long getId();
String getMsgName();
String getKey();
String getInstanceState();
boolean isALive();
String getSource();
String getFieldValue(String fieldname);
51
Using Automated Testing and Debugging Tool�������	

3 Familiarization Exercises 3.12 More on Virtual fields

52
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.1 Introduction

CHAPTER

4 Command Reference
This chapter lists all of the Tester’s commands and describes their operation.

4.1 Introduction
The commands are described below in the order in which they appear in the menus
(starting at the top left).
Where a menu option also has a keyboard shortcut, it is given in SMALL CAPITALS.
Some menu options can also be invoked by Buttons in appropriate tabs or windows.

4.2 Menus

Figure 60 Tester main menu

4.2.1 File
File > Connect, CTRL+SHIFT+C

Open a connection to a Domain.
File > Disconnect, CTRL+SHIFT+D

Disconnect from a Domain.
File > Remove All Readers

Remove all previously-added Readers.
File > Add Reader

Add a single topic Reader.
53
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.2 Menus

Figure 61 Add Reader dialog

File > Add Readers
Add multiple Readers by selecting from the Topic List.

Figure 62 Add Readers from Topic list

File > Save Readers List
Save the current list of topics to a file. The keys, QoS, wait for historical info
will be preserved.
The format of the readers list file (and the add reader specification) is:
54
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.2 Menus

<!>[#QOS#]topic_name[|readername][\[partitionname\]]
<optional_key> <optional_foreign_key1> <optional_foreign_key2>
<optional_foreign_key3>

File > Load Readers List
Load a topics file. Topics already in the list will not be recreated.

File > Add Fields
Load new fields. Example field.txt is located in the example directory.

Figure 63 Load Extra Fields dialog

File > Plugins
Install/Uninstall Plugins. The example SimplePlugin plugin is located in the
example directory. It must be compiled and put in to the plugins directory
specified in Preference page.

Figure 64 Plugins dialog

File > Save Layout
Save the current layout of the windows in a file, this can later be used to
organize the windows in the same way. Save Layout is only applicable to
non-IDE mode.
55
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.2 Menus

File > Load Layout
Load a specific layout of the windows as previously saved (select by file on the
disk) with Save Layout. Load Layout is only applicable to non-IDE mode.

File > Preferences
Can be used to change the locations of the macros and scripts directories.
(See also section 2.1, Starting and Stopping Tester, on page 7).

File > Exit
Quit the application.

4.2.2 Script
Script > Script Editor, ALT+SHIFT+S

Open the script Edit window.
Script > Debug Window

Open the script Debug window.
Script > Scripts

Open the scripts window which allows for quick access to scripts found on the
script path (as defined in the ospltest.properties). (See also File >
Preferences Can be used to change the locations of the macros and scripts
directories. (See also section 2.1, Starting and Stopping Tester, on page 7). above and
section 2.1, Starting and Stopping Tester, on page 7).

Script > Macros
Open the macros window which allows for quick access to the macros found in
the macro path (as defined in the ospltest.properties). (See also File >
Preferences Can be used to change the locations of the macros and scripts
directories. (See also section 2.1, Starting and Stopping Tester, on page 7). above and
section 2.1, Starting and Stopping Tester, on page 7).

Script > Batch, ALT+SHIFT+B
Open the Batch Execute window for the batch execution of several scripts

Script > Batch Results
Display the results of the batch run.

4.2.3 View
View > Samples, ALT+1

Open the Sample List window.
View > Statistics, ALT+2

Open the Statistics window.
View > Browser, ALT+3

Open the Browser window.
56
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.2 Menus

4.2.4 SampleList
The Sample List displays the current list of read samples. The list is sorted on source
time (timestamp) of the topic samples. Topics Samples are only displayed when the
Show checkbox in the Reader list is checked (note that un-checking Show does not
delete the topics Samples). A double-click in the list results in the topic being
displayed in the Sample window.
The state displayed with the topic is the Sample state of the sample. When the state
of the topic is alive then if this is the last Sample with that key it is displayed as
ALIVE_AND_KICKING for received samples and ALIVE_AND_SEND for samples
sent by Tester. This makes it very easy to spot topics which are not disposed.
When exactly two topics are selected the difference between the source timestamps
is displayed.
The following menus are only active when the Sample List tab is selected showing
samples. (If you are in the Browser tab, for example, then the menus will not be
active (they will be ‘greyed out’)).
SampleList > Clear, Clear button

Clear the Sample List.
SampleList > Dump

Dump the contents of the current (filtered) Sample List to a file.
SampleList > Dump Selection, P (also CTRL+P and ALT+P)

Write the current selection content to a file.
SampleList > Dump to CSV

Write the contents in CSV format.
SampleList > Dispose Alive

Dispose all topics in the Sample list with a state alive and kicking (i.e. all
last Samples of a topic with a given key which are still alive), this function can
be used to clean up (dispose left alive samples) a list after a test.

SampleList > Diff Script
Create a list of instructions in the current scenario which reproduces the list of
samples in the Sample list. The diff means that only fields which do not have the
default value or are a key/switch field are used in the script.

SampleList > Diff Script Selection
Create a diff script for the current selection of samples.

SampleList > Show Chart, ALT+SHIFT+C
Display the chart window. To fill the chart with data select a column with
numeric values and press Y. This will add a trace with the values of the column,
using the time received on the X axis. Multiple traces can be added. Select a
filter to limit to the appropriate values. To display a scatter plot, clear the traces
57
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.2 Menus

and select the column to use on the x-axis, then press X. After this select the
column with values for the Y axis and press Y. It is also possible to
automatically create multiple traces based on a key value. First select the
column to be used as key and press K before the Y column is selected.

F2
Compare two topic Samples. Select the first topic Sample in the Sample
window (by double-clicking), then select the second topic Sample and press F2.
The samples will be displayed side by side with the differences marked in the
window of the second topic (normally the left window). A field marked in red is
different, a field marked in orange was not found in the first topic Sample. If not
different then (foreign) key fields will be marked in green and yellow. (See also
section 2.3.5.6, Topic Instance Window, on page 19.)

F3
Display a topic Sample in a separate Sample window.

F4
Open the topic edit window with the values of the selected topic.

F9
Fields of the current selected topic sample can be added for display in the
Sample list. Fields are displayed based on name. Any topic Sample with a field
of that name will provide the value of the field. A field column can be deleted
by selecting a cell in the column and then pressing delete.

4.2.5 Display
When the Sample List is open these commands allow the user to adjust the window
display attributes to their needs.
Display > Font Smaller, CTRL+MINUS

Decreases the font size of the Sample List window.
Display > Font Larger, CTRL+PLUS

Increases the font size of the Sample List window.
Display > Day Time

Toggles the Dtime column format between number of milliseconds (ms) and
time-of-day (hh:mm:ss.ms).

Display > Colors
Toggles the display of colors (on or off).

Display > Refresh
Refreshes the Sample List window.

Display > Only Show Alive
Filters the samples to display samples in the ‘alive’ state.
58
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.2 Menus

4.2.6 Filter
When the Sample List is open these commands enable you to filter the displayed
samples based on the Topic and Key attributes of the current sample.
The filter can also be applied by typing the key directly in the filter window. Add a +
(plus) sign in front of the key value to filter including foreign key relations (it is not
possible to filter on key and topic name when entering the key manually). The filter
can also be reset by clicking the Reset button.
Filter > Topic, CTRL+F5

Filter on topic name.
Filter > Topic and Key, F5

Filter on key and topic name.
Filter > Key, F6

Filter on key only (so all topics with the same value for key are displayed).
Filter > Resets, F7

Clears the filter.
F8

Filter on the key value and also allow forward foreign key relations (i.e. find
topics which have a key which matches a foreign key of an already displayed
topic.

F12
Filter all messages with the same sample state.

F
Filter based on text in a column, the column is listed in the filter box (i.e.
[<column>]) add the text on which to filter and then press ENTER.

4.2.7 Editor
When the Edit window is open these commands allow the user to create and manage
Scenarios and Macros.
Editor > New Scenario, CTRL+N

Create a new scenario. A File Save dialog will be displayed to provide the
filename of the scenario. The initial scenario will be created using the template
scenario_template.txt which is found in the installation directory.

Editor > New Macro, CTRL+M
Create a new macro. A File Save dialog will be displayed to provide the
filename of the macro. The initial macro will be created using the template
macro_template.txt which is found in the installation directory.
59
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.2 Menus

Editor > Open, CTRL+O
Opens the File Open dialog, the selected Script or Macro file will be loaded in
the editor.

Editor > Save, CTRL+S
Save the current script to disk (to the same file as it was loaded/created).

Editor > Save As, CTRL+SHIFT+S
Opens the Save dialog for entering a filename to which the current script will be
saved.

Editor > Complete, CTRL+SHIFT+C, CTRL+T
Completes the Scenario by inserting ‘start scenario’ and ‘end scenario’
text at the beginning and end of the current file.

4.2.8 Edit
When the Edit window is open these commands provide basic text editing
capabilities.
Edit > Cut, Edit > Copy, Edit > Paste, Edit > Find/Replace

Traditional text editing commands. The standard key combinations (such as
CTRL+X and CTRL+C) are also recognized.

Edit > Format, CTRL+SHIFT+F, CTRL+I
Automatically formats the text in the current edit window. Formatting removes
extra blank lines and normalizes the indentation.

4.2.8.1 Keyboard-only commands
Some functions are not accessible from the menu bar; these are mostly common
editing commands that are invoked with standard (‘traditional’) key combinations
(‘shortcuts’).
CRL+A

Select all text in the current field or editor window.
CTRL+E

Execute the current scenario.
CTRL+SPACE

Complete the scenario at the current location. If the cursor is on an empty line,
the list of possible commands is shown; on a complete command, the
appropriate editor for that command is opened (if available).

CTRL+Z
Undo the last command.
60
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.3 Lists

4.2.8.2 Macro Recorder
The Tester has a simple macro recorder, intended for ad hoc use, controlled by
keyboard commands only. It can record and store a single un-named macro which is
only retained for the current session (until the Tester is closed).
CTRL+SHIFT+R

Start recording a new macro. Any previously-recorded macro is deleted.
CTRL+SHIFT+S

Stop recording.
CTRL+SHIFT+M

Play the recorded macro.

4.3 Lists
4.3.1 Services

Displays a list of the Services running on this node. A display-only window.

4.3.2 Scripts
Displays a list of the installed Scripts (.sd files) and Batch Scripts (.bd files).
Refresh

Refreshes the list.
<select> a Script

Displays the Script in the Edit window

4.3.3 Macros
Displays a list of the installed Macros (.md files).
Refresh

Refreshes the list.
Scen

Checking this option displays Scripts as well as Macros.
<select> a Macro

Displays the Macro in the Edit window

4.3.4 Readers
For each reader the count of received samples is displayed as well as the QoS and
partition. A check box is provided for changing the read state or the show state.
When Read is unchecked the reader stops reading samples. When Show is
unchecked the topic samples of that topic will not be displayed in the sample list.
Select all

Checks the show state for all topic samples.
61
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.3 Lists

Deselect all
Unchecks the show state for all topic samples.

<select> a Topic Instance
Enables you to check/uncheck the Read and Show state.

<right-click> Delete Reader, DELETE
Deletes the selected reader.

<right-click> Recreate Reader, CTRL+R
Recreates the selected reader and as such re-reads any persistent/transient data
available.

<right-click> Show First Sample, F3, or double-click on the reader
Shows the first sample for the selected reader.

<right-click> Edit Sample, F4
Opens an Edit Sample window for the selected topic.

F9
Opens the field selection window for the display of fields of the selected topic.

4.3.4.1 Edit Sample Window
The Edit Sample window is used for editing field values of a topic and then writing
the sample or dispose the instance. It is also used to insert the topic values as a
‘send’ or ‘check’ entry in the current script (at the cursor position in the script
window).
The Edit Sample window can be filled with a topic from both the Topics window
and the Sample List window with the F4 key. If the topic write window is filled with
a topic from the topics list window then the values are all empty (except for union
discriminators which get a default value). If the window is filled from the sample
list window then the fields get the values of the selected topic sample in the sample
list. The key fields are marked in green and the foreign keys are marked in yellow.
Fields can be edited by selecting the edit field (right most column). If the field is of
an enumerated type then a combo box is displayed which provides all possible
values. The topmost value is empty for reset to the default value (not set).
The keyboard can be used to navigate the edit fields. The cursor UP and DOWN
(arrow) keys move between fields; any other key starts editing the value in the
current field.
62
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.3 Lists

Figure 65 Edit sample window

(There is a second form of this window, used when opened from the script with
CTRL+SPACE, CTRL+LEFT-CLICK, or as part of completion. It only has two buttons:
OK and Cancel. Pressing CTRL+ENTER or CTRL+RETURN is the same as clicking OK.)
write

Write the sample.
writeDispose

Write the sample and Dispose the instance.
dispose

Dispose the instance.
script

Instead of writing the sample this create the script commands to write the
sample. These commands are inserted into the current scenario being edited and
the user will be taken to this text.

check
Similar to script but creates the script command to check the sample values.

F4
Copy the current selected field from the topic in the instance window.

F5
Copy all fields based on an equal name from the topic in the instance window.

F6
Fill all fields with .sec in the name with the current time seconds and fields
with .nanosec in the name with the current tme in nanoseconds.

CTRL+T
Fills a field of type int with the seconds part of the current time.
63
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.4 Windows

CTRL+U
Fills a field of type long with a unique key.

CTRL+V
Paste a value.

ALT+DOWN
Opens the enum editor.

ENTER, RETURN
Commits the current edited value.

ESC
Discards the current edited value.

Once the desired values have been entered the topic can be written by clicking the
Write button, disposed by clicking the Dispose button, or write disposed by clicking
the WriteDispose button.

4.3.5 Topics
The topics list displays the list of topics as known in the system.
<select> a Topic

Selects a Topic.
<right-click> Create Reader

Create a Reader for the selected Topic.
<right-click> Create Default Reader

Makes the selected Reader the default reader to be displayed in the Samples
List.

F2
The key list definition window will open which allows to change the (foreign)
keys. The syntax is the same as in the add topic window or topic file. To support
the selection of the keys the primary fields of the topic are displayed and will be
inserted at the cursor position in the edit field when clicked.

4.4 Windows
4.4.1 Sample List Window

The Sample List window is used to display samples. By default the delta time, topic
name, state, key, and source are displayed. Additional columns can be added and
filters defined.
64
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.4 Windows

Figure 66 Sample List window

Clear
Clears the list.

Filter <value>
The current filter value.

Reset
Resets the filter value.

Pack
Adjusts the displayed column widths.

<select> a Sample
Selects a sample to use with <right-click>commands. CTRL+LEFT-CLICK selects
another sample. If exactly two samples are selected, the difference in source
time will be displayed in the top bar of the Sample List window.

<right-click>Select Extra Fields, F9
Opens a dialog box allowing selection of extra fields to display.

<right-click> Display Sample, <double-click>
Displays sample details.

<right-click> Display Sample New Window, F3
Displays sample details in new window.

<right-click> Compare Sample, F2
Compares two samples with each other and show differences in red colour.

<right-click> Edit Sample, F4
Allows Tester to edit the selected sample values.

<right-click> Filter on topic, CTRL+F5
Filters on the selected topic value.

<right-click> Filter on topic and key, F5
Filters on both the selected topic and key values.

<right-click> Filter on State, F12
Filters on the State of the selected sample.
65
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.4 Windows

<right-click> Filter of Key, F6
Filters on the Key value of the selected sample.

<right-click> Filter on Column Text, F
Sets the filter to be the value of the current column.

<right-click> Filter Reset, F7
Resets the filter value.

<right-click> Delete extra column, DEL
Removes the selected extra column from the list.

<right-click> Add Column as Key to Chart, K
Assigns the selected column as the key field for the chart.

<right-click> Add Column as X to Chart, X
Assigns the selected column as the x-axis for the chart.

<right-click> Add Column as Y to Chart, Y
Assigns the selected column as the y-axis for the chart.

CTRL+F
Finds the next sample containing the search text in any column.

4.4.2 Statistics Window
The Statistics window provides statistics for the topics in use, such as write count,
number of alive topics, etc. The following values are displayed for each topic:

The left table shows either the participants, the topics, or the statistics of the
currently selected reader/writer as indicated by the selected tab.
When the list of participants is shown, a participant can be selected. The second
table shows the list of readers with their statistics, the third table show the list of
writers with their statistics.
When the list of topics is shown, a topic can be selected. The second table shows the
list of participants reading the topics with their statistics, the third table shows the
list of participants writing the topic with their statistics.

Count The number of samples currently in the OpenSplice database
Arrived The number of arrived samples
Takes The number of takes by the reader
Reads The number of reads by the reader
Alive The number of alive topics (instances not disposed)
Writes The number of written samples
66
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.4 Windows

If a value of -1 or -2 is shown then an error occurred during the retrieval of the
statistics for the reader/writer.
By selecting a row in the reader or writer list all statistics for that reader or writer
will be shown in Stats tab of the left window.
Refresh

Will refresh the content.
Add readers

Will add the topics in the reader list to the list of monitored topics.
Add writers

Will add the topics in the writer list to the list of monitored topics.
CTRL+F

Finds the next reader/writer containing the search text in any column.

4.4.3 Browser Window
The Browser window enables you to view the Readers and Writers in the system.
You may browse by Node, Participant, or Topic.

Figure 67 Browser window

Refresh
Will refresh the browser content.

Add readers
Will create a Tester reader from the list of readers for the selected read-topic.
The QoS of the discovered reader will be used to ensure that data read by that
reader will be captured in the timeline.
67
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.4 Windows

Add writers
Will create a Tester reader from the list of writers for the selected written-topic.
The QoS of the discovered writer will be used to ensure that data written by that
writer will be captured in the timeline.

Show disposed participants
Used to toggle the display of disposed participants.

CTRL+F
Finds the next reader/writer containing the search text in any column.

4.4.4 Edit Window
The Edit window is used to create and modify Scripts and Macros. Refer to
Chapter 5, Scripting, on page 71, for more details.

Figure 68 Edit window

Traditional text editing commands and standard key combinations (such as CTRL+X
and CTRL+C) are recognized. Menu commands and keyboard shortcuts for editing
scripts and macros are described in sections 4.2.7, Editor, 4.2.8, Edit, 4.3.2, Scripts,
and 4.3.3, Macros.
When editing macros, instruction-specific editing dialogs may open; for example,
the send, check and execute macro instructions have their own editing dialogs
which help to make your entries conform to their syntax.

Figure 69 Editor for execute instruction
68
Using Automated Testing and Debugging Tool

�������	

4 Command Reference 4.4 Windows

Compile
Compile the current content.

Execute
Run the current script or macro without clearing the sample list.

Clear and Execute
Clears the sample list and then runs the current script/macro and returns the user
to the Sample List window.

<drop down>
Allows for quick selection of recently edited scripts/macros.

4.4.5 Debug Window
The Debug window is used for tracing/debugging Script compilation and execution.
For each step, the day/time, type of message, and message text is displayed along
with the location (line number) in the scenario.

Figure 70 Debug window

Control execution of the scenario with the buttons at the top left of the window:

CTRL+F
Finds the next message containing the search text in any column.

Start Start or resume execution

Pause Pause execution

Stop Stop (halt) execution
69
Using Automated Testing and Debugging Tool�������	

4 Command Reference 4.4 Windows

70
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.1 The Script Language

CHAPTER

5 Scripting
The Tester provides automatic testing capabilities by means of scripting. This
chapter describes the features of Tester’s built-in scripting instructions, and how to
install additional script engines.

5.1 The Script Language
The script language as used by the Tester is specifically designed to create readable
and easily maintainable scripts.
Instructions are simple, with named parameters which enable the Tester to limit the
testing to the fields applicable to the test. For example, the send instruction is an
instruction which sends a topic. The basic syntax is the keyword send followed by
the topicname and a list of named parameters between parentheses (round
brackets), terminated with a semicolon.

Figure 71 Illustrating send keyword syntax

The check instruction is similar to the send instruction; it has options to find a
specific instance using key fields or a query.
71
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.1 The Script Language

Figure 72 Illustrating check keyword syntax

In this example a timeout is set, which will allow a wait of up to 0.2 seconds for
the topic sample for the correct instance to arrive.

5.1.1 A script file
A scenario has the following format:

Figure 73 Illustrating scenario keyword syntax

The name is for information only, and is not used further.

5.1.2 Variables
The script language allows the use of variables. Variables can be used to store
values that can then be used at a later time. A variable is indicated by either a << or
>> prefix. Variables may be declared implicitly, or explicitly using the var
instruction.
72
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.1 The Script Language

Figure 74 Example variable

In this example the variable myvar is declared and initialized with the value 5.
Within the send instruction the variable is used to provide the value for the field
index. The << prefix indicates the direction of the assignment from the variable to
the field.

Figure 75 Variable with >> prefix

Here the variable index_of_4 is declared implicitly and the value of the field
index is copied to the variable (the prefix >> points to the variable).
All environment variables and java virtual machine (JVM) properties are also
available as variables, and they can be used as shown below:

Figure 76 Using environment variables

5.1.2.1 Special variables
There are some special variables which can be useful in scripts.
curtime_sec and curtime_nsec provide the second and nanosecond parts of the

current time.
uniqid provides a unique number for every call, within the same session of the

Tester.
Note that these special values are used without the ‘<<’ prefix.
73
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.1 The Script Language

5.1.3 Embedded Scripts
Inside a scenario any script compatible with the java ScriptEngineFactory can be
used to provide calculated values for fields in a send, check or var instruction.
Embedded script is enclosed by left single quotes (pink text):

Figure 77 Embedded javascript

Variables used in the javascript are translated before the evaluation of the script. In
this specific case the <<dt is the delta time in the repeat function. All javascript in
one scenario is executed in the same scope, and functions and variables declared at
the beginning of a script are available later in the script.
A specific script language can be selected by providing the name of the script
language in the first line of the embedded script: “#!<language>”, for example
“#!js”. Note that the language description must not be followed by any other text.
See section 5.6, Installing Script Engines, on page 83, for instructions on installing a
scripting language for use with the OpenSplice Tester. If no language descriptor is
provided on the first line of a script, the default language is used as set in
Preferences.
74
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.1 The Script Language

Figure 78 Embedded javascript

5.1.4 Comments
Comments can have the following formats:

Figure 79 Format of comments

Within the scenario editor comments are displayed in green.

5.1.5 Macros
For repeated scenarios a repetitive part can be separated in a separate script file
called a macro. Macros can have parameters.
75
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.2 The Instructions

Figure 80 Calling a macro with parameters

Similarly to send and check instructions, values for fields can be optional.
However, in a macro a default value must be provided for a parameter to be
optional.

Figure 81 Setting a default value for a macro parameter

In this case t is optional, id and x are mandatory.
It is possible to call a scenario using the call instruction. Scenarios do not have
parameters.

5.2 The Instructions
5.2.1 Send

Instruction to publish a sample of a topic.
send <readername> ([fieldname => value,]*);

5.2.2 Dispose
Instruction to dispose an instance of a topic.

dispose <readername> ([fieldname => value,]*);

5.2.3 Writedispose
Instruction to write dispose an instance of a topic.

writedispose <readername> ([fieldname => value,]*);

5.2.4 Check
Instruction to check a sample of a topic.
76
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.2 The Instructions

Check[_last|_any] <readername> ([timeout => <timeout in
seconds>,] [<fieldname> => [!]<value>[:deviation],]*);

A timeout value can be provided allowing the check to wait for <timeout in
seconds> for the sample to arrive. If a sample meeting the criteria of the check is
available either directly or within timeout seconds the fields as provided in the
parameter list will be verified for correctness.
When the value of a field is an output variable:

>><varname>

Then the value will not be checked but entered in the variable with the name
<varname>.
There are two special fields, topicReceived and topicDisposed, which when
used will provide a true or false value into a variable.
When no sample is found which meets the cri ter ia of the check then
topicReceived will be set to false (and the check instruction will not fail); if a
sample is received the value will be set to true. When a field topicDisposed is
found, then the variable will be set to true if the sample was disposed and false if
the sample was not disposed. In this case no fail is reported upon a check instruction
when the checked sample was disposed.
The value can be given a possible deviation in the form <value>:<allowed
deviation>. In this case when the value for the field in the received sample is
within the range from value minus allowed_deviation to value plus
allowed_deviation, the value is considered correct.
The sample which matches the check can be determined in several ways:
1. The topic does not have a keyfield(s) or the topic has keyfield(s) but no value is

provide for all keyfield(s). In this case the oldest not checked or marked sample
is checked.

2. The topic has keyfield(s) and the check provides a value for all keyfield(s). In
this case the last sample with the key is checked. If no matching sample (within
the possible timeout) is found then the check fails.

3. One or more fields of the check are marked as a query by prefixing the value
with a ‘!’. The oldest not checked or marked sample which matches the query is
checked. If no matching sample is found (within the possible timeout) the check
fails.

4. Instead of check, the command check_last is used. In this case (as for
situations 1 and 3) the last sample matching the criteria is checked.

5. Instead of check, the command check_any is used. In this case also
previously-checked or marked samples are considered.
77
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.2 The Instructions

5.2.5 Miss
Instruction to check that no sample of a topic was received since the last checked or
marked sample for the given key/query. The same rules apply as for the check
instruction with respect to finding (or not) the matching topic sample.

miss <topicname> ([timeout => <timeout_in_seconds>,] [<fieldname>
=> [!]<value>[:<deviation>],]*);

5.2.6 Disposed
Instruction to check that an instance of a topic is disposed for the given key/query.
The same rules apply as for the check instruction with respect to finding the
disposed instance. Note that field values are only provided to find a specific instance
(either by key or by query) and not verified for values as part of this instruction.

disposed <topicname> ([timeout => <timeout_in_seconds>,]
[<fieldname> => [!]<value>,]*);

5.2.7 Mark
Mark all samples (with the given key/query) as read. Any regular miss/check
function will not ‘see’ topic samples received before the mark instruction. If no key
or query is provided all samples will be marked as read (and therefore not
considered for check or check_last instructions). If a key value or query is
provided, all samples matching the key/query will be marked as read.

mark <topicname> ([fieldname => value,]*);

5.2.8 Repeat
Instruction to repeatedly send a topic for a specified count or until disposed.

repeat <topicname> <period> <count> ([fieldname => value,]*);

If <count> is ‘0’ then the repeat will continue until the scenario terminates or until
a dispose for the same topic and key. The variable dt is available for calculating a
field value based on time since the repeat was started. The period indicates the
period with which the topic will be sent. Note that a repeat command by itself does
not extend the execution of a scenario and that when a scenario finishes (i.e. all
following instructions are executed) the repeat instruction is terminated
automatically. In such a case the wait or message instruction can be used to ensure
that the repeat instruction is completed.

5.2.9 Set
The set instruction allows the call of a macro in a table-like fashion. The command
allows a number of static parameters and variable parameters. The command has the
following format:

set <macroname>
([<fieldname>=><value>]*)((<fieldname>*),[(<value>*),]*);
78
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.2 The Instructions

For example the following set instruction:
 set send_and_check_test (
 t => 2)
 ((x,id),
 (3.1, 1),
 (2.34, 2),
 (3.678, 3),
 (6.34, 4),
 (99.99, 5))

In this example the send_and_check_test macro is called five times, all five
calls will be made with t = 2 and the values for x and id as indicated by each row
of values. This can be very usefull for testing of translations.

5.2.10 Execute
The execute instruction allows the execution of an application or command line
script on the native OS.

execute [wait] [log] “<instruction>”;

If wait is set then the instruction will wait for the execute to complete. If log is set
then the output of the execute will be logged to the Debug window (and resulting
dump file). When log is used wait should also be used, to avoid overwriting log
messages.

5.2.11 Log
The log instruction logs a message to the Debug window. Log messages can
provide information immediately (i.e. a step being made in a script, or a value of
some variable) or post-execution as part of the logfile which includes the full
content of the Debug window.

log (“message” [optional var]);

5.2.12 Message
The message instruction opens a dialog with the message and allows the operator
to provide feedback and a OK/NOK indication. The feedback plus OK/NOK
indication are logged to the debug window.

message (“message text” [optional var]);

This instruction is useful for semi-automatic testing of user interfaces where the
GUI part is done manually using message instructions.

5.2.13 Fail
The fail instruction fails the execution of the scenario (final result). The execution
terminates.

fail (“message” [optional var]);
79
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.3 Instructions for Graphs

The fail instruction can be useful in combination with an if instruction, for
instance when a complex check is executed using javascript.

5.2.14 Call
The call instruction calls a macro or scenario. The name of the macro/scenario is
the filename without extension. Macros must be on the macropath as provided in
the configuration file. The Macrolist window displays all available macros. Also
note that the macro name must be unique throughout all of the available macros
because the path is not part of the selection of a macro (just the filename withour
extension).

call <macroname> ([<parametername> => <value>,]*);

5.2.15 Reader
The reader instruction allows the creation or deletion of a reader. When the
keyword dispose is used the reader (if it exists for that topic) will be deleted.
When a reader is created the topicname is mandatory.

reader [dispose] (<topicname> [, <qos> [,<partition>
[,<readername>]]]);

The qos can be provided in short notation (2 or 4 characters):
< v | l | t | p >< b | r >[h][<S|E><D|S>

where

5.3 Instructions for Graphs
5.3.1 Graph

The graph instruction allows manipulation or save of the graph. It has the
following parameters:

X
Y
Key
Color
Title

< v | l | t | p > Volatile, local transient, transient or persistent
< b | r > Best effort or reliable
[h] History, for a “keep” of 10 which allows for the

reception of 10 samples with the same key in one
poll interval

<S|E> Shared or exclusive ownership
<D|S> Ordering based on Destination or Source time

stamp
80
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.4 Instructions for Flow Control

xUnits
yUnits
save => <name>
show => true|false
reset => true|false

Note that all graphs have the same X component; when omitted the X will be the
sample time. If the Y parameter is set, then a new trace is created for the current
graph. The X, key, color, title and units are used for this trace if provided.
If reset is true, then the graph is cleared (i.e. all existing traces are deleted)
before creating any new trace. If show is true then the graph is made visible after
adding the trace; when false, then the graph is hidden after adding the trace. When
save is true the graph will be saved to an image file after the trace has been added.

5.3.2 Column
The column instruction allows the creation of an extra column from a script for use
by the graph instruction.

column [clear] (<fieldname> [, <columnname>]);

When the optional clear is set then the column for the field with name fieldname
will be removed. When columnname is omitted, the columnname will be the same
as the fieldname.

5.4 Instructions for Flow Control
5.4.1 Wait

The wait instruction forces a wait in the execution of the script. The time is
provided in seconds.

wait (<time in seconds>);

Value can be a variable.

5.4.2 If
The if instruction allows conditional execution of instructions.

If (val1 <operator> val2) then
 <true instruction list>
[else
 <false instruction list>]
endif;

<Operator> is one of ‘==’, ‘!=’, ‘>’, ‘<‘, ‘>=’, ‘<=’, ‘||’, ‘&&’.
Expressions can be layered with brackets:

((x>0) && (y>0))
81
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.5 Instructions for the Message Interface

5.4.3 For
The for instruction allows the execution of a list of instructions multiple times.

for ,<var> in 1 .. 10 loop
 <instruction list which can use <<var>
endloop;

or
for <var> in (a,b,c) loop
 <instruction list which can use <<var>
endloop;

5.4.4 Exit
The exit instruction exits the scenario

exit;

5.5 Instructions for the Message Interface
5.5.1 Write

The write instruction writes a message to the interface.
write <interface>.<message> ([<fieldname> => <value>,]*);

5.5.2 Read
The read instruction checks a received message from the interface.

read <interface>.<message> ([<fieldname> => <value>,]*);

5.5.3 Connect
The connect instruction calls the connect of the interface. The functionality
depends on the implementation in the interface.

connect <interface>;

5.5.4 Disconnect
The disconnect instruction calls the disconnect of the interface. The
functionality depends on the implementation in the interface.

disconnect <interface>;

5.5.5 Control
The control instruction allows the execution of special instructions as provided by
the interface.

control <interface>.<instruction>[([<fieldname> => <value>,]*)];
82
Using Automated Testing and Debugging Tool

�������	

5 Scripting 5.6 Installing Script Engines

5.6 Installing Script Engines
In order to use additional script languages the appropriate script engines must be
added to the Java classpath. The Java JRE already comes with a JavaScript
engine by default (i.e. no specific installation is required). More Java script engines
are available and can be used to support different scripting languages for the
embedded scripts inside the scenario scripts, or for the additional fields.
When Tester starts, the available script engines will be logged (default log file is
/tmp/OSPLTEST.log).

5.6.1 Jython
Download and install Jython on the target machine. Include jython.jar, which is
normally located in the Jython installation directory, in the classpath of the
OpenSplice Tester. Use this language by adding the following line as the first line of
each script using the Jython script language:

#!jython

5.6.2 Jruby
Download and install Jruby on the target machine. Include jruby.jar, which is
normally located in the lib directory in the Jruby installation, in the classpath of
the OpenSplice Tester. Use this language by adding the following line as the first
line of each script using the Jruby script language:

#!jruby

5.6.3 Groovy
D o w n l o a d a n d i n s t a l l G r o o v y o n t h e t a rg e t m a c h i n e . I n c l u d e
groovy-all-<version>.jar, which is normally located in the embeddable
directory in the Groovy installation, in the classpath of the OpenSplice Tester.
Use this language by adding the following line as the first line of each script using
the Groovy script language:

#!groovy
83
Using Automated Testing and Debugging Tool�������	

5 Scripting 5.6 Installing Script Engines

84
Using Automated Testing and Debugging Tool

�������	

6 Message Interfaces 6.1 Message interfaces

CHAPTER

6 Message Interfaces
This chapter describes how to test applications with non-DDS interfaces.

6.1 Message interfaces
An important feature of the OpenSplice Tester is the support of additional
interfaces. When an application under test only has a DDS interface it is probably
easy to test automatically by stimulating it from the OpenSplice Tester with samples
and verifying the samples produced by the application under test. When the
application under test has a GUI component, the message instruction can be used to
perform a semi automated test where the Tester performs manual control of the GUI
and/or performs visual inspections of the GUI (as instructed in the message
instruction).
When an application under test has a non-DDS interface, then the message interface
of OpenSplice Tester can be used. There are a number of constraints on the use of a
message interface:
• The interface must consist of a limited number of message types which can be

described by a static set of fields with static types.
• It must be possible upon reception of a message over the interface, to determine a

message type, and from the message type to interpret the message and determine
the value for each field of the message.

If these requirements are met, a message interface can be developed for an specific
interface of an application under test. This will allow automated testing where
messages are written to the test interface, the message received from the test
interface will be added to the sample list and can be checked in the same manner as
DDS samples.

6.2 Getting Started with a Message Interface
The best way to get started with a message interface is to compile and use the
TestInterface. The TestInterface is an example message interface which uses a
TCP/IP connection and sends a memory-mapped message with a static structure
over this interface. The source for the TestInterface is provided and can be found
here:

<OSPL_HOME>/examples/tools/ospltest/TestInterface
85
Using Automated Testing and Debugging Tool�������	

6 Message Interfaces 6.2 Getting Started with a Message Interface

To compile the TestInterface, ant and a JDK1.6 must be installed. To build the
TestInterface execute ant in the TestInterface directory. This will compile the
testinterface and install the resulting plugin in:

<OSPL_HOME>/examples/tools/ospltest/plugins

To run with the plugin, make sure the plugin path points to this directory. The plugin
path can be set in Preferences:

Figure 82 Setting the plugins path in Preferences

If the plugins directory is changed, the Tester needs to be restarted. Once restarted,
make sure that OpenSplice is running (the TestInterface registers a topic which will
fail is DDS is not running upon startup).
Now two instances of the testinterface should show up in the left tab pane or in
separate windows if Use Tabs is false. Similar to the Readers pane, the table will
show the available messages and the number of received messages per message
type. Since there is no application under test, the testinterface is instantiated twice
and connected back to back. As a result a message written to the instance “tst1” will
be received on the instance “tst2” and vice versa. Also the testinterface has created a
topic, OsplTestLogTopic, and the test interface will write a sample of this topic for
each write and read with the content of the message in hexadecimal format.
86
Using Automated Testing and Debugging Tool

�������	

6 Message Interfaces 6.2 Getting Started with a Message Interface

Figure 83 Messages received on instance tst1
Now select the test_interface.sd scr ipt , which can be found in
examples/tools/ospltest/scripts:

Figure 84 The script test_interface.sd
In the script we can see that, similar to the send and check instruction, the write
and read instructions are used to write a message to the test interface, or read
(check) a message received on the test interface.
Execute the script:
87
Using Automated Testing and Debugging Tool�������	

6 Message Interfaces 6.3 Types of interfaces

Figure 85 Script test_interface.sd running

Here we can see that in the sample list, both the DDS samples as well as the
testinterface samples are available. As a result the interaction is clearly visible.

6.3 Types of interfaces
When integrating a test interface with the OpenSplice Tester, the following
functionality is provided:
• Connect/Disconnect with a parameter
• Write of messages based on parameters of a write call
• Read of messages and display received messages in the sample list
• Check received messages
• Display fields of messages (double click in sample list)
• Hooks upon write/read of a message
The OpenSplice Tester provides two ways to create such a message interface:
• Basic message interface
88
Using Automated Testing and Debugging Tool

�������	

6 Message Interfaces 6.3 Types of interfaces

• Buffered message interface

6.3.1 Basic message interface
If it is not possible to describe the content of each message in an ADA interface
description (i.e. a static memory-mapped definition of each message type) or when
the definition of the interface exists in another format, like a MIB for an SNMP
interface, then it is possible to derive from the basic message interface class:

BaseMsgInterface

Similarly for the messages a class must be derived from:
MsgSample

Note that both BaseMsgInterface and MsgSample contain a considerable
number of abstract function which then must be provided in order to be able to edit
and display samples, as well as read and write sample on their interface.

6.3.2 Buffered message interface
The example test interface is a buffered message interface. The OpenSplice Tester
provides support for memory-mapped messages and provides all basic functionality
for this type of interface. The messages are described using the ADA language type
definition for records with a representation clause. This allows to describe message
with bit fields, enums, fixed length strings, integer and double values.
On top of the buffered message interface, an implementation using UDP and TCP is
available.
When the buffered message interface is used the provided implementation takes
care of interpreting the received messages, decode the messages for display in the
sample list or display in the sample window. Upon a write instruction a memory
buffer will be built using the parameters of the write call and the message definition
as provided in the ADA interface description.

6.3.2.1 ADA Syntax for message definition
For each message a record needs to be defined which describes the exact memory
layour of the message. See the ADA message description of the test interface for an
example of such a message definition.

6.3.2.2 Message ID translation
By default in a buffered message interface a base record is defined with an idfield to
determine the type of the message. Then a function is called to translate the value of
the idfield to a name of the record type with the definition of a message of the
received type.
If a message does not contain a single field which can be used to determine the
message type than the method:
89
Using Automated Testing and Debugging Tool�������	

6 Message Interfaces 6.3 Types of interfaces

RecordType determineMsgType(ByteBuffer buf)

Can be overwritten to perform the translation of the received buffer to a message
type.
If indeed the id can be retrieved from an id field (enum value) then the function:

protected static String transformIdToType(String id)

is used to translate the enum label to the name of a record definition. The following
translation is done:
• ID is changed to TYPE
• Each character following an underscore (‘_’) is capitalized, as well as the first

character and the remaining characters are made lowercase.
As a result an enum label: HEARTBEAT_MESSAGE_ID is translated to
HeartbeatMessageType.
Of course if a different convention is used for describing enum labels and message
names, then the transformIdToString function can be overridden to perform
the required translation.

6.3.2.3 Message Hooks
It is possible to override message hooks at several stages in the send and receive
process. This allows specific processing, such as:
• Automatic reply to each received message (acknowledge messages)
• Fill in automatic fields like sequence numbers, crcs, or timestamps
• Ignore messages for reception, like acknowledge messages or heartbeats
• Perform specific checks such as crc check
See the example test interface for an example of the hooks and a description of their
function.

6.3.2.4 Control functions
The script control function allows implementation specific control functions to be
implemented. In the implementation of the derived interface, the following
functions can be overridden (note that the base implementation already provides
some control commands, overriding these functions must properly include or
forward to the base implementation):

public String[] getControlCommands()

Provide the list of control commands, note that super.getControlCommands should
be used to include the list of control commands of the base impementation.

public void control(String command, ParameterList params,
ScenarioRuntime runtime, int line, int column)
90
Using Automated Testing and Debugging Tool

�������	

6 Message Interfaces 6.3 Types of interfaces

Execute the control command, with the provided parameters and runtime. In case of
an error the line and column can be used as the location of the instruction which
failed.
Control functions can be used for any specific function as deemed necessary (of
course, all must be implemented in the derived interface class):
• Stop sending heartbeats
• Create incorrect crc
• Stop sending acknowledge
• Determine message frequency
91
Using Automated Testing and Debugging Tool�������	

6 Message Interfaces 6.3 Types of interfaces

92
Using Automated Testing and Debugging Tool

�������	

Appendices
Appendix

A Scripting BNF
This Appendix gives the formal description of the Tester Scripting language.

TOKENS

<DEFAULT> SKIP : {

" "

| "\t"

| "\n"

| "\r"

| <"//" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>

| <"--" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>

| <"/*" (~["*"])* "*" ("*" | ~["*","/"] (~["*"])* "*")* "/">

}

<DEFAULT> TOKEN : {

<INTEGER_LITERAL: <DECIMAL_LITERAL> (["l","L"])? | <HEX_LITERAL> (["l","L"])?
| <OCTAL_LITERAL> (["l","L"])?>

| <#DECIMAL_LITERAL: (["+","-"])? ["0"-"9"] (["0"-"9"])*>

| <#HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+>

| <#OCTAL_LITERAL: "0" (["0"-"7"])*>

| <FLOATING_POINT_LITERAL: (["+","-"])? (["0"-"9"])+ "." (["0"-"9"])*
(<EXPONENT>)? (["f","F","d","D"])? | "." (["0"-"9"])+ (<EXPONENT>)?
(["f","F","d","D"])? | (["0"-"9"])+ <EXPONENT> (["f","F","d","D"])? |
(["0"-"9"])+ (<EXPONENT>)? ["f","F","d","D"]>

| <#EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+>

| <CHARACTER_LITERAL: "\'" (~["\'","\\","\n","\r"] | "\\"
(["n","t","b","r","f","\\","\'","\""] | ["0"-"7"] (["0"-"7"])? | ["0"-"3"]
["0"-"7"] ["0"-"7"])) "\'">

| <STRING_LITERAL: "\"" (~["\"","\\","\n","\r"] | "\\"
(["n","t","b","r","f","\\","\'","\""] | ["0"-"7"] (["0"-"7"])? | ["0"-"3"]
["0"-"7"] ["0"-"7"] | ["\n","\r"] | "\r\n"))* "\"">

| <JAVASCRIPT: "`" (~["`"])* "`">

}

<DEFAULT> TOKEN : {
93
User Guide�������	

 Appendices
<SEND: "send">

| <REPEAT: "repeat">

| <PERIODIC: "periodic">

| <MACRO: "macro">

| <DISPOSE: "dispose">

| <WRITEDISPOSE: "writedispose">

| <WAIT: "wait">

| <WAITABS: "waitabs">

| <CALL: "call">

| <RUN: "run">

| <CHECK: "check">

| <CHECK_LAST: "check_last">

| <CHECK_ANY: "check_any">

| <DISPOSED: "disposed">

| <MARK: "mark">

| <MISS: "miss">

| <MARKMSG: "markmsg">

| <MISSMSG: "missmsg">

| <SCENARIO: "scenario">

| <UNIQID: "uniqid">

| <VAR: "var">

| <END: "end">

| <MSG: "message">

| <LOG: "log">

| <FAIL: "fail">

| <CLEAR: "clear">

| <IF: "if">

| <THEN: "then">

| <ELSE: "else">

| <ENDIF: "endif">

| <FOR: "for">

| <IN: "in">

| <LOOP: "loop">

| <ENDLOOP: "endloop">

| <WHILE: "while">

| <READER: "reader">

| <WRITE: "write">

| <READ: "read">

| <CONNECT: "connect">

| <DISCONNECT: "disconnect">

| <EXEC: "execute">

| <CONTROL: "control">

| <SET: "set">

| <COLUMN: "column">

| <GRAPH: "graph">
94
User Guide �������	

Appendices

NON-TERMINALS

| <REVERSE_FAIL: "reverse_fail">

| <EXIT: "exit">

}

<DEFAULT> TOKEN : {

<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT>)*>

| <#LETTER: ["$","A"-"Z","_","a"-"z"]>

| <DIGIT: ["0"-"9"]>

}

Scenario ::
=

<SCENARIO> <IDENTIFIER> (InstructionList)? <END>
<SCENARIO>

Macro ::
=

<MACRO> <IDENTIFIER> "(" (ArgumentList)? ")" (
InstructionList)? <END> <MACRO>

| <SCENARIO> <IDENTIFIER> (InstructionList)? <END>
<SCENARIO>

InstructionList ::
=

(Instruction)+

Instruction ::
=

SendInstruction

| RepeatInstruction

| PeriodicInstruction

| DisposeInstruction

| WriteDisposeInstruction

| WaitInstruction

| WaitabsInstruction

| CheckInstruction

| CheckLastInstruction

| CheckAnyInstruction

| DisposedInstruction

| MarkInstruction

| MarkMsgInstruction

| MissInstruction

| MissMsgInstruction

| CallInstruction

| ForInstruction

| WhileInstruction

| SetInstruction
95
User Guide�������	

 Appendices
| VarDeclaration

| IfInstruction

| MessageInstruction

| ClearInstruction

| LogInstruction

| FailInstruction

| ReaderInstruction

| WriteInstruction

| ReadInstruction

| ConnectInstruction

| DisconnectInstruction

| ExecuteInstruction

| ControlInstruction

| ColumnInstruction

| GraphInstruction

| ReverseFailInstruction

| ExitInstruction

ReaderInstruction ::
=

<READER> (<DISPOSE>)? "(" Constant (","
<IDENTIFIER> ("," Constant ("," Constant)?)?)?
");"

ColumnInstruction ::
=

<COLUMN> (<CLEAR>)? "(" Constant ("," Constant)?
");"

GraphInstruction ::
=

<GRAPH> "(" ParameterList ");"

MessageInstruction ::
=

<MSG> "(" <STRING_LITERAL> (Constant)? ");"

LogInstruction ::
=

<LOG> "(" <STRING_LITERAL> (Constant)? ");"

FailInstruction ::
=

<FAIL> "(" <STRING_LITERAL> (Constant)? ");"

ControlInstruction ::
=

<CONTROL> <IDENTIFIER> "." <IDENTIFIER> (("("
ParameterList ((");") | (")" ";"))) | (";"))

ClearInstruction ::
=

<CLEAR> ";"

ExitInstruction ::
=

<EXIT> (<IF> <FAIL>)? ";"

SendInstruction ::
=

<SEND> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ParameterList)? ");"

RepeatInstruction ::
=

<REPEAT> <IDENTIFIER> FloatValue IntValue "(" (
ParameterList)? ");"

PeriodicInstruction ::
=

<PERIODIC> <IDENTIFIER> <IDENTIFIER> FloatValue
IntValue "(" (ParameterList)? ");"
96
User Guide �������	

Appendices
WriteInstruction ::
=

<WRITE> <IDENTIFIER> "." <IDENTIFIER> "(" (
ParameterList)? ");"

VarDeclaration ::
=

<VAR> FieldName "=>" Constant ";"

DisposeInstruction ::
=

<DISPOSE> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ParameterList)? ");"

WriteDisposeInstruction ::
=

<WRITEDISPOSE> <IDENTIFIER> (("." <IDENTIFIER>))?
"(" (ParameterList)? ");"

CheckInstruction ::
=

<CHECK> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ChkParameterList)? ");"

CheckLastInstruction ::
=

<CHECK_LAST> <IDENTIFIER> (("." <IDENTIFIER>))?
"(" (ChkParameterList)? ");"

CheckAnyInstruction ::
=

<CHECK_ANY> <IDENTIFIER> (("." <IDENTIFIER>))? "("
(ChkParameterList)? ");"

ReadInstruction ::
=

<READ> <IDENTIFIER> "." <IDENTIFIER> "(" (
ChkParameterList)? ");"

MarkMsgInstruction ::
=

<MARKMSG> <IDENTIFIER> "." <IDENTIFIER> "(" (
ChkParameterList)? ");"

MissMsgInstruction ::
=

<MISSMSG> <IDENTIFIER> "." <IDENTIFIER> "(" (
ChkParameterList)? ");"

ConnectInstruction ::
=

<CONNECT> <IDENTIFIER> (Constant)? ";"

DisconnectInstruction ::
=

<DISCONNECT> <IDENTIFIER> ";"

DisposedInstruction ::
=

<DISPOSED> <IDENTIFIER> (("." <IDENTIFIER>))? "("
(ChkParameterList)? ");"

MissInstruction ::
=

<MISS> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ChkParameterList)? ");"

MarkInstruction ::
=

<MARK> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ChkParameterList)? ");"

CallInstruction ::
=

<CALL> <IDENTIFIER> (("." <IDENTIFIER>))? "(" (
ParameterList)? ");"

SetInstruction ::
=

<SET> <IDENTIFIER> "(" (ParameterList)? ")" "(" "("
ParamHeaderList ")" ParamSetList ");"

ParamHeaderList ::
=

<IDENTIFIER> ("," ParamHeaderList)?

ParamSetList ::
=

"," ParamSet (ParamSetList)?

ParamSet ::
=

"(" ParamValueList ")"

ParamValueList ::
=

Constant ("," ParamValueList)?
97
User Guide�������	

 Appendices
IfInstruction ::
=

<IF> "(" CompareExpression ")" <THEN> InstructionList
(<ELSE> InstructionList)? <ENDIF> ";"

CompareExpression ::
=

CalcExpression (CompareOperator CompareExpression)?

CalcExpression ::
=

PrimaryExpression (CalcOperator CalcExpression)?

PrimaryExpression ::
=

Constant

| "(" CompareExpression ")"

CompareOperator ::
=

"=="

| "!="

| ">"

| "<"

| ">="

| "<="

| "||"

| "&&"

CalcOperator ::
=

"|"

| "&"

| "+"

| "-"

| "*"

| "/"

ForInstruction ::
=

<FOR> <IDENTIFIER> <IN> ((IntValue ".." IntValue) |
"(" VarList ")") <LOOP> InstructionList <ENDLOOP> ";"

WhileInstruction ::
=

<WHILE> "(" CompareExpression ")" <LOOP>
InstructionList <ENDLOOP> ";"

VarList ::
=

Constant ("," VarList)?

WaitInstruction ::
=

<WAIT> "(" Constant ");"

WaitabsInstruction ::
=

<WAITABS> "(" Constant ");"

ExecuteInstruction ::
=

<EXEC> (<WAIT>)? (<LOG>)? <STRING_LITERAL> ";"

ReverseFailInstruction ::
=

<REVERSE_FAIL> ";"

ParameterList ::
=

Parameter ("," Parameter)* (",")?
98
User Guide �������	

Appendices
[End]

Parameter ::
=

FieldName "=>" Constant

ChkParameterList ::
=

ChkParameter ("," ChkParameter)* (",")?

ChkParameter ::
=

FieldName "=>" ("!")? Constant (":" Constant)?

ArgumentList ::
=

Argument (Argument)*

Argument ::
=

FieldName ":" FieldName (":=" Constant)? ";"

FieldName ::
=

<IDENTIFIER> ("[" <INTEGER_LITERAL> "]")? (("."
FieldName))?

IntValue ::
=

<INTEGER_LITERAL>

| "<<" <IDENTIFIER>

| <IDENTIFIER>

FloatValue ::
=

<FLOATING_POINT_LITERAL>

| "<<" <IDENTIFIER>

| <IDENTIFIER>

Constant ::
=

<INTEGER_LITERAL>

| <FLOATING_POINT_LITERAL>

| <CHARACTER_LITERAL>

| <STRING_LITERAL>

| ">>" <IDENTIFIER>

| ">>" <JAVASCRIPT>

| "<<" <IDENTIFIER> ("." <IDENTIFIER>)?

| <IDENTIFIER>

| <UNIQID>

| <JAVASCRIPT>
99
User Guide�������	

 Appendices
100
User Guide �������	

	OpenSplice Automated Testing and Debugging Tool
	Table of Contents
	Preface
	About the User Guide
	Contacts

	Using Automated Testing and Debugging Tool
	1 Introduction
	1.1 Features
	1.2 Location of Tester in the OpenSplice architecture
	1.3 Things to Know
	1.4 Prerequisites

	2 Getting Started
	2.1 Starting and Stopping Tester
	2.1.1 Starting - Local Connection
	2.1.2 Starting - Remote Connection
	2.1.3 Stopping
	2.1.4 Remotely Controlling Tester

	2.2 Trying out Tester
	2.3 Tester Windows
	2.3.1 Main Window
	2.3.2 Overview Windows
	2.3.2.1 Services
	2.3.2.2 Scripts
	2.3.2.3 Macros
	2.3.2.4 Topics
	2.3.2.5 Readers

	2.3.3 Working Windows
	2.3.3.1 Sample List Window
	2.3.3.2 Statistics Window
	2.3.3.3 Browser Window

	2.3.4 Scripting Windows
	2.3.4.1 Edit Window
	2.3.4.2 Debug Window

	2.3.5 Other Windows
	2.3.5.1 Add Reader Window
	2.3.5.2 Batch Window
	2.3.5.3 Batch Results Window
	2.3.5.4 Chart Window
	2.3.5.5 Edit Sample Window
	2.3.5.6 Topic Instance Window

	3 Familiarization Exercises
	3.1 Starting the Tester
	3.2 Connection management
	3.2.1 To Connect to a local OpenSplice instance
	3.2.2 To Connect to a remote OpenSplice instance
	3.2.3 To Disconnect
	3.2.4 To Exit Tester

	3.3 Topics and Readers
	3.3.1 The Topic list
	3.3.2 To Add a Reader from the Topic list
	3.3.3 To Add a Reader from the File menu
	3.3.4 To Add multiple Readers to the Tester timeline
	3.3.5 To Save the current Readers to a file
	3.3.6 To Remove all Readers
	3.3.7 To Load Readers from a saved file
	3.3.8 To Delete a Reader

	3.4 Samples
	3.4.1 Writing and Editing Samples
	3.4.1.1 To Write Sample Topic data
	3.4.1.2 To display detailed information on sample data
	3.4.1.3 To Display extra fields
	3.4.1.4 To Edit a sample
	3.4.1.5 To Compare two samples

	3.5 Filtering
	3.5.1 To Filter the Sample List on a Topic
	3.5.2 To Reset Filters and display all samples
	3.5.3 To Filter on both Topic and Key
	3.5.4 Filter samples on State
	3.5.5 To Filter Samples on Key value
	3.5.6 Filter on column text
	3.5.7 Find specific text

	3.6 Working with Samples
	3.6.1 To Delete a column from the Sample List table
	3.6.2 To Chart Sample Data
	3.6.3 To Dump a sample list to a file
	3.6.4 To Dump selected Samples only
	3.6.5 To Dump to a CSV format file
	3.6.6 To Dispose data with Alive state
	3.6.7 To Translate Sample data to test script
	3.6.8 Translate selected sample to test script

	3.7 System Browser (Browser window)
	3.7.1 Browse tree
	3.7.2 Readers and Writers tables are updated when a new Reader is created
	3.7.3 Readers and Writers tables are updated when a new Reader is deleted
	3.7.4 To Check Reader and Writer compatibility
	3.7.5 To Show Disposed Participants from the Browser tree
	3.7.6 To Spawn a Tuner from the System Browser
	3.7.7 Statistics
	3.7.7.1 Statistics - participants
	3.7.7.1.1 Write sample topics and check statistics window content

	3.7.7.2 Statistics - topics
	3.7.7.2.1 Write sample topics and check statistics window content

	3.8 Scripting
	3.8.1 To Create a New Scenario
	3.8.2 To Create a New Macro
	3.8.3 To Edit an Existing Scenario or Macro
	3.8.4 To Save an open Scenario or Macro
	3.8.5 To Complete and Compile a Scenario
	3.8.6 Script selection
	3.8.7 Code completion

	3.9 Execute and Debug
	3.9.1 To Run the Current Script
	3.9.2 Batch execution (Batch window)
	3.9.3 To Run a Batch Script from the Command Line
	3.9.4 Batch results
	3.9.4.1 Load batch result
	3.9.4.2 Scan regression folder for batch results
	3.9.4.3 Scan regression for specified directory

	3.10 Adding virtual fields
	3.10.1 Add virtual fields to the topic

	3.11 Plugins
	3.11.1 Install / Uninstall plugins

	3.12 More on Virtual fields
	3.12.1 Adding Virtual Fields via plugin
	3.12.2 Adding Virtual Fields via script

	4 Command Reference
	4.1 Introduction
	4.2 Menus
	4.2.1 File
	4.2.2 Script
	4.2.3 View
	4.2.4 SampleList
	4.2.5 Display
	4.2.6 Filter
	4.2.7 Editor
	4.2.8 Edit
	4.2.8.1 Keyboard-only commands
	4.2.8.2 Macro Recorder

	4.3 Lists
	4.3.1 Services
	4.3.2 Scripts
	4.3.3 Macros
	4.3.4 Readers
	4.3.4.1 Edit Sample Window

	4.3.5 Topics

	4.4 Windows
	4.4.1 Sample List Window
	4.4.2 Statistics Window
	4.4.3 Browser Window
	4.4.4 Edit Window
	4.4.5 Debug Window

	5 Scripting
	5.1 The Script Language
	5.1.1 A script file
	5.1.2 Variables
	5.1.2.1 Special variables

	5.1.3 Embedded Scripts
	5.1.4 Comments
	5.1.5 Macros

	5.2 The Instructions
	5.2.1 Send
	5.2.2 Dispose
	5.2.3 Writedispose
	5.2.4 Check
	5.2.5 Miss
	5.2.6 Disposed
	5.2.7 Mark
	5.2.8 Repeat
	5.2.9 Set
	5.2.10 Execute
	5.2.11 Log
	5.2.12 Message
	5.2.13 Fail
	5.2.14 Call
	5.2.15 Reader

	5.3 Instructions for Graphs
	5.3.1 Graph
	5.3.2 Column

	5.4 Instructions for Flow Control
	5.4.1 Wait
	5.4.2 If
	5.4.3 For
	5.4.4 Exit

	5.5 Instructions for the Message Interface
	5.5.1 Write
	5.5.2 Read
	5.5.3 Connect
	5.5.4 Disconnect
	5.5.5 Control

	5.6 Installing Script Engines
	5.6.1 Jython
	5.6.2 Jruby
	5.6.3 Groovy

	6 Message Interfaces
	6.1 Message interfaces
	6.2 Getting Started with a Message Interface
	6.3 Types of interfaces
	6.3.1 Basic message interface
	6.3.2 Buffered message interface
	6.3.2.1 ADA Syntax for message definition
	6.3.2.2 Message ID translation
	6.3.2.3 Message Hooks
	6.3.2.4 Control functions

	A Scripting BNF
	TOKENS
	NON-TERMINALS

