OpenSplice DDS

Version 6.x

IDL Pre-processor Guide

v PRISMTECH

OpenSplice DDS

IDL PRE-PROCESSOR GUIDE

& PRISMTECH

Part Number: OS-IDLP Doc Issue 29, 25 January 2014

Copyright Notice
© 2014 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

i
P T i
& PRISMTECH IDL Pre-processor Guide

CONTENTS

Table of Contents

Preface

About theIDL Pre-processor Guide ..., Vii
(@0 1 7= o £ viii

The DL Pre-processor

Chapter 1 Description and Use 3
L1 INtroduCtion. . ..o e 3
12 PrereqUISITES . ..ottt e 4
1.3 IDL Pre-processor Command LineOptionscovvinn.n.. 5
1.4 OpenSpliceDDSModesand Languages.cocvviieiiiiinennnn. 8
1.5 IDL Pre-processor Grammarouueiitn it 9
151 Key DEfiNitionsot e 18
1.5.1.1 Supportedtypesforkeys ... 18
1.51.2 Character arraySasKeysot 19
1.6 Bounded stringsascharacter arraysouiiininnenn.n. 20
1.7 Modes, Languagesand Processingsteps, 21
170 Integrated C++ ORBo e 21
172 CHStandalone. 23
R T 1 55 23
174 CStandaloneo 23
175 JavasStandalone.o e 25
1.76 Integrated JavaORBo e 26
1.8 BUilt-in DDSdatatypesot e 26
Bibliography 31
Glossary 35
I ndex 39

& PRISMTECH v

IDL Pre-processor Guide

Table of Contents

vi

IDL Pre-processor Guide A PRISMTECH

Preface

About the DL Pre-processor Guide

The IDL Pre-processor Guide describes what the OpenSplice DDS IDL
Pre-processor included with the OpenSplice DDS product is and how to useit.

Intended Audience

The IDL Pre-processor Guide is intended to be used by developers creating
applications which use OpenSplice DDS.

Organisation

Section 1.1, Introduction, provides a high-level description and brief introduction of
the IDL Pre-processor.

Section 1.2, Prerequisites, describes the prerequisites needed to run the
pre-processor.

Section 1.3, IDL Pre-processor Command Line Options, provides the options which
are available for running the pre-processor.

Section 1.4, OpenSplice DDS Modes and Languages, provides a summary of
OpenSplice’s supported modes and languages, as well as an overview of the
applicable OpenSplice DDS libraries.

Section 1.5, IDL Pre-processor Grammar, showsthe IDL grammar that is supported
by the OpenSplice DDS IDL Pre-processor.

Section 1.7, Modes, Languages and Processing steps describes the steps required
for creating programs for each of the modes and languages supported by the
Pre-processor.

Section 1.8, Built-in DDS data types describes the built-in DDS data types and
provides language-specific guidelines on how to use them.

Conventions

A

C

C++

& PRISMTECH

The conventions listed below are used to guide and assist the reader in
understanding the IDL Pre-processor Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Vii
IDL Pre-processor Guide

Preface

viii

Java

Javalanguage specific
Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, such as
Contacts on page viii, are hypertext links: click on the reference to go to the item.

% Commands or input which the user enters on the
command |ine of their conputer termnal

Couri er fontsindicate programming code and file names.

Extended code fragments are shown in shaded boxes:
NameConmponent newNane[] = new NanmeConponent|[1];

/1 set id field to “exanple” and kind field to an enpty string
newName[0] = new NaneConponent (“exanple”, “*);

Italics and I talic Bold are used to indicate new terms, or emphasise an item.

Sans-serif and Sans-serif Bold are used to indicate elements of a Graphical User
Interface (GUI) or Integrated Development Environment (IDE), such as an
OK button, and sequences of actions, such as selecting File > Save from amenu.

Sep 1. Oneof severa steps required to complete atask.

Contacts

PrismTech can be reached at the following contact points for information and
technical support.

USA Corporate Headquarters European Head Office

PrismTech Corporation PrismTech Limited

400 TradeCenter PrismTech House

Suite 5900 5th Avenue Business Park

Woburn, MA Gateshead

01801 NE11 ONG

USA UK

Tel: +1 781 569 5819 Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

Web: http: //www.prismtech.com

Technical questions: crc@prismtech.com (Customer Response Center)

Sales enquiries: sales@prismtech.com

& PRISMTECH

IDL Pre-processor Guide

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

THE IDL PRE-PROCESSOR

CHAPTER

Description and Use

The OpenSplice DDS IDL Pre-processor plays a role in generating code for
DDSDCPS specialized interfaces (TypeSupport, DataReader and DataWriter) from
application data definitions defined in IDL for all supported languages.

I ntroduction

& PRISMTECH

The OpenSplice DDS IDL Pre-processor supports two modes:
» Sandalone mode where the application is only used with OpenSplice DDS

» ORB integrated mode where the application is used with an ORB as well as with
OpenSplice DDS
In a standalone context, OpenSplice DDS provides, apart from the DDS/DCPS
related artifacts, all the artifacts implied by the IDL language specific mapping. In
this case the used name space is DDS instead of the name space implied by the IDL
language specific mapping.
In an ORB integrated context, the ORB pre-processor will provide for the artifacts
implied by the IDL language specific mapping, while OpenSplice DDS only
provides the DDS/DCPS related artifacts. The application data type representation
provided by the ORB is aso used within the OpenSplice DDS context. In this way
application data types can be shared between the ORB and OpenSplice DDS within
one application program.
The OpenSplice DDS IDL Pre-processor accepts IDL which complies with the
OMG CORBA specification, to specify application data types. Additionally it
allows specifying keys on data types.
A number of DDS data types defined in the DCPS API (for example, Ti me_t) are
available for use with application IDL data types and can be seen as OpenSplice
DDS IDL Pre-processor “built-in” definitions.

Figure 1, OpenSplice DDSIDL Pre-processor High Level Processes, on page 4
shows the OpenSplice DDS IDL Pre-processor high-level processing.

The OpenSplice DDS IDL Pre-processor scans and parses the IDL input file
containing the application data type definitions.

For the selected language, the OpenSplice DDS IDL Pre-processor generates the
specialized interfaces for TypeSupport , the Dat aReader and the Dat aWi t er
from specialized class template files which are provided by OpenSplice. Note that

3
The IDL Pre-processor

1 Description and Use 1.2 Prerequisites

the OpenSplice DDS IDL Pre-processor will only generate specialized interfaces for
application data types for which a key list is defined. If it is not, the OpenSplice
DDS IDL Pre-processor assumes that the data type will only be used enclosed in
other data types.

The OpenSplice DDS IDL Pre-processor also generates language specific support
functions, which are needed to allow the OpenSplice DDS system to handle the
application data types.

For the standalone context the OpenSplice DDS IDL Pre-processor generates the
language specific application data types according the OMG IDL language mapping
that is applicable for the specific target language.

Application IDL data anner and parser

types

Language specific age specific typed Application Foo
specialized class S generator classes
templates

A 4

uage specific suppo Application language
ons generator specific support
functions

\ 4

age specific data ty Application language
ator specific data types

Figure 1 OpenSplice DDSIDL Pre-processor High Level Processes

1.2 Prerequidtes

4

The OpenSplice DDS environment must be set correctly for UNIX-based platforms
before the OpenSplice DDS IDL Pre-processor can be used. Runr el ease. com
from a shell command line to set the environment. r el ease. comislocated in the
root directory of the OpenSplice DDS installation (<OSPL_HOVE>):

% . <OSPL_HOVE>/rel ease. com

The OpenSplice DDS IDL Pre-processor, i dl pp, can be invoked by running it from
acommand shell:

% idlpp

& PRISMTECH

The IDL Pre-processor

1 Description and Use

1.3 IDL Pre-processor Command Line Options

Thei dl pp command line options are describe in Section 1.3, IDL Pre-processor
Command Line Options, below.

IDL Pre-processor Command Line Options

The OpenSplice DDS IDL Pre-processor, i dl pp, can be run with the following
command line options:

& PRISMTECH

[-h]
-b <ORB-tenpl at e- pat h>]
-n <include-suffix>]

-1 <path>]
-D <macro>[=<definition>]]
-l (¢ | c++ | cpp | java | cs | isocpp | isoc++) >

-j [old]:<new>]
-0 <dds-types> | <custom psnk | <no-equality>]
-d <output-directory>]

[-P <dll _macro_name>[, <header _file>]]

<fil enane>

[
[
[
[
<-S]|] -C>
<
[
[
[

These options are described in detail, below. Options shown between angle
brackets, < and >, are mandatory. Options shown between square brackets, [and],
are optional.

-h
-b

- List the command line options and information.

<ORB- t enpl at e- pat h> - Specifiesthe ORB specific path within the template
path for the specialized class templates (in case the template files are ORB
specific). The ORB specific template path can also be set via the environment
variable OSPL_ORB_PATH, the command line option is however leading. To
complete the path to the templates, the value of the environment variable
OSPL_TMPL_PATH is prepended to the ORB path.

<i ncl ude- suf fi x> - Overrides the suffix that is used to identify the ORB
dependent header file (specifying the data model) that needs to be included.
Normally the name of this include file is derived from the IDL file name and
followed by an ORB-dependent suffix (e.g. 'C. h' for ACE-TAO based ORBS).
This option is only supported in CORBA cohabitation mode for C++; in all
other casesit issimply ignored.

Exampleusage: -n . stub. hpp

(For afile named 'f oo. i dl ' thiswill include 'f oo. st ub. hpp' instead of
'f 0oC. h', which isthe default expectation for ACE-TAQ.)

<pat h> - Passes the include path directives to the C pre-processor.

- D <macr 0> - Passes the specified macro definition to the C pre-processor.

5
The IDL Pre-processor

1 Description and Use 1.3 IDL Pre-processor Command Line Options

- S - Specifies standalone mode, which allows application programs to be build and
run without involvement of any ORB. The name space for standard types will
be DDS instead of the name space implied by the IDL language mapping.

- C- Specifies ORB integrated mode, which allows application programsto be build
and run integrated with an ORB.

-1 (c | c++ | cpp | java | cs | isocpp | isoc++) - Selectsthetarget
language. Note that the OpenSplice DDS IDL Pre-processor does not support
every combination of modes and languages. This option is mandatory; when no
language is selected the OpenSplice DDS IDL Pre-processor reports an error.

- For thec, c++, cpp, j ava and cs target languages the types will default to the
standard types. For the i socpp and i soc++ target languages the types will
default to the ISOC++ types that comply with the ISO/IEC C++ 2003 Language
DDS PSM. When using i socpp or i soc++ an equality operator will also be
generated for types unless this feature is explicitly disabled.

- For the Standalone mode in C (when using the - S flag and the ¢ language
option), OSPL_ORB_PATH will by default be set to value SAC, which is the
default location for the standalone C specialized class template files.

- For the CORBA cohabitation mode in C++ (when using the - C flag and the
c++ or cpp language option) the OSPL_ORB_PATH will, by default, be set to:

UNIX — CCPP/ DDS_OpenFusion_1_6_1 for Unix-based platforms.

WIN — CCPP\ DDS_(OpenFusi on_1_6_1 for Windows platforms.
These are the default locations for the IDL to C++ speciaized class template
files of the OpenSplice-Tao ORB. Class templates for other ORBS are aso
available in separate sub-directories of the CCPP directory, but for more
information about using a different ORB, consult the README file in the
custom | i b/ ccpp directory.

- For the Standalone mode in C++ (when using the -Sflag and the c++ or cpp
language option), OSPL_ORB_PATH will by default be set to value SACPP,
which is the default location for the standalone C++ specialized class template
files.

Java - For the Standalone mode in Java (when using the - S flag and the java language
option), OSPL_ORB_PATH will by default be set to the value of SAJ, which is
the default location for the standal one Java specialized class template files.

Java - For the CORBA cohabitation mode in Java (when using the - C flag and the
j ava language option), GSPL_ORB_PATH will by default be set to the value of
SAJ, which is the default location for the CORBA Java speciaized class
template files. This means that the CORBA cohabitated Java APl and
StandAlone Java API share the same template files.

6

The IDL Pre-processor A PRISMTECH

1 Description and Use

C#

Java

& PRISMTECH

-

1.3 IDL Pre-processor Command Line Options

- For the Standalone mode in C# (when using the - S flag and the cs language
option), OSPL_ORB_PATH will by default be set to the value of SACS, whichis
the default location for the standalone CSharp specialized class template files.

See also Section 1.4, OpenSplice DDS Modes and Languages, on page 8 for the
supported modes and languages.

[ol d]: <new> - Only applicable to Java. Specifies that the (partial) package
name which matches [ol d] will be replaced by the package name which
matches <new> (the package <new> is substituted for the package [ol d]). If
[ol d] isnot included then the package name defined by <new> is prefixed to
all Java packages. The package names may only be separated by . ' characters.
A trailing '. ' character is not required, but may be used.

Exampleusage: -j :org. opensplice (prefixesall Javapackages).
Exampleusage: -j com opensplice.: org. opensplice. (substitutes).

dds-t ypes - Enables the built-in DDS data types. In the default mode, the
built-in DDS data types are not available to the application IDL definitions.
When this option is activated, the built-in DDS data types will become
available. Refer to Section 1.8, Built-in DDS data types, on page 26.

cust om psm- Enables support for alternative IDL language mappings.
Currently CSharp offers an alternative language mapping where IDL hames are
tranglated to their Pascal Case representation and where '@’ instead of ' ' is used
to escape reserved C#-keywords.

no- equal i ty - Disables support for the automatically-generated equality
operator on | SOC++ types.

<out put -directory> - Specifiesthe outputdirectory for the generated
code.

<dl' | _macro_nane>[, <header _fi | e>] - Thisoption controls the signature
for every external function/classinterface. If you want to use the generated code
for creating a DLL, then interfaces that need to be accessible from the outside
need to be exported. When accessing these operations outside of the DLL, then
these external interfaces need to be imported. In case the generated code is
statically linked, this option can be omitted.

The first argument <dI | _nmacr o_nane> specifies the text that is prepended to
the signature of every external function and/or class. For example: defining
DDS_API as the macro, the user can define this macro as
__decl spec(dl | export) when building the DLL containing the generated
code, and definethemacroas__decl spec(dl i nport) whenusingthe DLL
containing the generated code.

7
The IDL Pre-processor

1 Description and Use 1.4 OpenSplice DDSModes and Languages

Addtionally a header file can be specified, which contains controls to define the
macro. For example the external interface of the generated code is exported
when the macro BUI LD _MY_DLL is defined, then thisfile could look like:

#i fdef BUI LD _MY_DLL

#define DDS_APlI _ decl spec(dl | export)
#else /* 1 BU LD My _DLL */

#defi ne DDS_APlI _ decl spec(dl|inport)
#endi f /* BU LD My_DLL */

<fi | ename> - Specifiesthe IDL input file to process.

OpenSplice DDS M odes and L anguages
The OpenSplice DDS IDL Pre-processor supports two modes:
» Sandalone mode where the application is only used with OpenSplice DDS

* ORB integrated mode where the application is used with an ORB as well as with
OpenSplice DDS

In a standal one context, OpenSplice DDS provides, apart from the DDS/DCPS
related artifacts, all the artifacts implied by the IDL language specific mapping. In
this case the used name space is DDS instead of the name space implied by the IDL
language specific mapping.

In an ORB integrated context, the ORB pre-processor will provide for the artifacts
implied by the IDL language specific mapping, while OpenSplice DDS only
provides the DDS/DCPS related artifacts. The application data type representation
provided by the ORB is also used within the OpenSplice DDS context. In this way
application data types can be shared between the ORB and OpenSplice DDS within
one application program.

The languages and modes that OpenSplice DDS supports arelisted in Table 1 below.

8

The IDL Pre-processor A PRISMTECH

1 Description and Use

1.5 IDL Pre-processor Grammar

Table 1 Supported Modes and L anguages

Language| Mode OpenSplice ORB Template Path
Library
C Standalone |dcpssac. so SAC
dcpsac.lib
C++ ORB dcpsccpp. so CCPP/ DDS_OpenFusion_1_4 1
Integrated for UNIX-like platforms, and
CCPP\ DDS_QpenFusion_1_5_1
for the Windows platform
C++ Standalone |dcpssacpp. so SACPP
| SOC++ | ISOCPP dcpsi socpp. so
Types
| SOC++ |ORB dcpsi socpp. so |CCPP/ DDS_OpenFusion_1_4_1
Integrated for UNIX-like platforms, and
CCPP\ DDS_OpenFusion_1 5 1
for the Windows platform
Java Standalone |dcpssaj . j ar SAJ
Java ORB dcpscj . jar SAJ
integrated
CH Standalone |dcpssacs SACS
Assenbl y. dl |
The language mappings for each language are in accordance with their respective
OMG Language Mapping Specifications (see Bibliography on page 31).

IDL Pre-processor Grammar

& PRISMTECH

The OpenSplice DDS IDL Pre-processor accepts the grammar which complies with
the CORBA Specification. The OpenSplice DDS IDL Pre-processor accepts the
complete grammar, but will ignore elements not relevant to the definition of data
types. In the following specification of the grammar (similar to EBNF), elements
that are processed by the OpenSplice DDS IDL Pre-processor are highlighted in
bol ditalic.Notethat OpenSplice DDS does not support all base types that are
specified by the OMG,

Thei dl pp also takesinto account all C pre-processor directivesthat are common to
ANSI-C, like#i ncl ude, #defi ne, #i f def , etc.

9
The IDL Pre-processor

1 Description and Use

<speci ficati on>

<definition>

<annot ati on>
<ann_dcl >
<ann_fwd_dcl >

<ann_header >

<ann_body>
<ann_i nheritance_spec>
<annot at i on_nane>

<ann_attr>

<ann_appl >
<ann_appl _post >
<ann_appl! _dcl >
<ann_appl _par ans>
<ann_appl _par an>
<struct _header>
<swi tch_t ype_nane>

<map_type>

10
The IDL Pre-processor

1.5 IDL Pre-processor Grammar

<inport>* <definition>+

<type_dcl > ";" <ann_appl _post> | <type_dcl>";"

| <const _dCl > ":" | <except_dcl>";" | <interface> ";"
| <module> ";" | <value> ";" | <type_id_dcl>";"
| <type_prefix_dcl>";" | <event> ";" | <conponent> ";"
|

<home_dcl > ";" | <annotation> ";" <ann_appl _post>

<ann_dcl > | <ann_fwd_dcl >
<ann_header> "{" <ann_body> "}"
"@nnotation ["(" ")"] local interface" <identifier>

"@nnotation ["(" ")"] local interface" <identifier>
[<ann_inheritance_spec>]

<ann_attr>*

<annot at i on_name>
<scoped_nane>

<ann_appl > "attri bute" <paramtype_spec> <sinpl e_decl arat or >

["default" <const_exp>1] ";" <ann_appl _post>

{ "@ <ann_appl _dcl> }*
{ "Il@ <ann_appl _dcl > }*
<annotation_name> ["(" [<ann_appl _parans>] ")"]

<const_exp> | <ann_appl _parane { "," <ann_appl _paranm> }*

<identifier> "=" <const_exp>

<ann_appl > "struct" <identifier> | <scoped_nane>]

<integer_type> | <char_type> | <w de_char_type>
| <bool ean_type> | <enumtype> | <octet_type> | <scoped_nanme>

"map" "<" <sinple_type_spec> "," <ann_appl > <sinpl e_type_spec>
"," <ann_appl _post> <positive_int_const> ">" | "map" "<"
<sinmpl e_type_spec> "," <ann_appl > <sinpl e_type_spec>
<ann_appl _post> ">"

& PRISMTECH

1 Description and Use 1.5 IDL Pre-processor Grammar

<modul e> 1= "nodul e" <identifier>"{" <definition>+ "}"
<interface> ;= <interface_dcl> | <forward_dcl>
<interface_dcl > i:= <interface_header> "{" <interface_body> "}"
<f orward_dcl > ::=["abstract" | "local"] "interface" <identifier>
<i nterface_header> ::=["abstract" | "local"] "interface" <identifier>
[<interface_inheritance_spec>]
<i nterface_body> ;1= <export>*
<export > 1= <type_dcl> ";" | <const_dcl> ";" | <except_dcl> ";"
| <attr_dcl> ";" | <op_dcl> ";" | <type_id_dcl>";"

| <type_prefix_dcl>";"

<interface_inheritance_spec>::=":" <interface_name> { "," <interface_name> }*
<i nterface_nane> .. = <scoped_nane>
<scoped_nane> i=<identifier>| "::" <identifier>
| <scoped_name> "::" <identifier>
<val ue> ::= (<val ue_dcl > | <value_abs_dcl > | <val ue_box_dcl >
| <val ue_forward_dcl >)
<val ue_f orward_dcl > i:= ["abstract"] "val uetype" <identifier>
<val ue_box_dcl > ;.= "valuetype" <identifier> <type_spec>
<val ue_abs_dcl > »:= "abstract" "val uetype" <identifier> [<value_inheritance_spec>]
"{" <export>* "}"
<val ue_dcl > .= <val ue_header> "{" < val ue_el enent>* "}"
<val ue_header > ci= ["custom!] "valuetype" <identifier>][<value_inheritance_spec>]
<val ue_i nheritance_spec> o= ":" ["truncatable"] <value_nane> { "," <value_nane> }*]
["supports" <interface_name> { "," <interface_nanme> }*]
<val ue_name> 1 = <scoped_name>
<val ue_el enent > ;1= <export> | < state_nenber> | <init_dcl>
<st at e_menber > c:= ("public" | "private")<type_spec> <decl arators>";"

1

The IDL Pre-processor A PRISMTECH

1 Description and Use 1.5 IDL Pre-processor Grammar

<init_dcl> c:="factory" <identifier> "(" [<init_paramdecls>]

")" [<raises_expr>] ";"
<i ni t_param decl s> ci= <init_paramdecl> { "," <init_paramdecl> }*
<i ni t _param decl > i:=<init_paramattribute> <paramtype_spec> <sinpl e_decl ar at or >
<init_paramattribute> i="int
<const _dcl > i:="const" <const_type> <identifier> "=" <const_exp>
<const _type> i:= <integer_type> | <char_type> | <wi de_char_type> |

<bool ean_type> | <floating pt _type> | <string type> |
<wi de_string_type> | <fixed_pt_const_type> | <scoped_nane> |
<octet_type>

<const _exp> 1= <or_expr>

<or _expr > II= <XOr_expr> | <or_expr> "|" <xor_expr>

<xor _expr> (1= <and_expr> | <xor_expr> """ <and_expr>

<and_expr > c:=<shift_expr>| <and_expr> "&" <shift_expr>

<shi ft_expr> i:= <add_expr> | <shift_expr> ">>" <add_expr>
| <shift_expr> "<<" <add_expr>

<add_expr > ci=<mult _expr> | <add_expr> "+" <nult_expr> |
<add_expr> "-" <mult_expr>

<mul t _expr> JI= <unary_expr> | <nult_expr> "*" <unary_expr> |
<mult _expr> "/" <unary_expr> | <nult_expr> "% <unary_expr>

<unary_expr> ;1= <unary_operator> <primary_expr> | <primary_expr>

<unary_operat or > e

<primary_expr> ::= <scoped_name> | <literal>| "(" <const_exp>")"

<literal > c:=<integer_literal>| <string_literal> |

<wi de_string literal> | <character literal > |
<wi de_character _literal> | <fixed_pt_literal> |
<floating pt literal> | <boolean_literal>

12

The IDL Pre-processor A PRISMTECH

1 Description and Use

<bool ean_literal >
<posi tive_int_const>

<t ype_dcl >

<t ype_decl ar at or >
<type_spec>
<sinpl e_t ype_spec>

<base_t ype_spec>

<tenpl at e_t ype_spec>

<constr_type_spec>
<decl ar at or s>

<decl ar at or >

<si nmpl e_decl ar at or >
<conpl ex_decl ar at or >
<fl oating_pt_type>
<i nt eger _type>

<si gned_i nt>

<signed_short _int>
<signed_l ong_i nt >
<si gned_| ongl ong_i nt >

The IDL Pre-processor

1.5 IDL Pre-processor Grammar

"TRUE" | "FALSE"
<const _exp>

"typedef" <type_declarator> | <struct_type>
<union_type> | <enumtype> | "native" <sinple_declarator> |
<constr_forward_decl >

<type_spec> <decl ar at or s>
<si npl e_type_spec> | <constr_type_spec>
<base_type_spec> | <tenplate_type_spec> | <scoped_nane>

<floating pt_type> | <integer type> | <char_type>
| <wide_char_type> | <bool ean_type> | <octet type>
| <any_type> | <object_type> | <val ue_base_type>

<sequence_type> | <string_type> | <w de_string_type>
| <fixed_pt_type> | <nmap_type>

<struct_type> | <union_type> | <enumtype>
<declarator>{ "," <declarator> }*

<si npl e_decl arator> | <conpl ex_decl ar at or >
<identifier>

<array_decl arat or >

"float"” | "double" | "long" "double"
<signed_int>| <unsigned_ int>

<signed_short_int> | <signed_|long_int>
<si gned_| ongl ong_i nt >

"short"
"l ong"

"1 ong" "l ong"

& PRISMTECH

1 Description and Use

<unsi gned_i nt >

<unsi gned_short _int>
<unsi gned_| ong_i nt >
<unsi gned_| ongl ong_i nt >
<char _type>

<wi de_char _type>
<bool ean_t ype>
<oct et _type>
<any_type>
<obj ect _type>
<struct_type>
<nenber |ist>

<nenber >

<uni on_t ype>

<swi tch_t ype_spec>
<swi t ch_body>
<case>

<case_| abel >

<el enent _spec>

<enum_type>

<enuner at or >

14
The IDL Pre-processor

1.5 IDL Pre-processor Grammar

<unsi gned_short _int> | <unsigned_long_ int>
| <unsigned_| ongl ong_int>

"unsi gned" "short"

"unsi gned" "l ong"

"unsi gned" "l ong" "l ong"
"char"

"wchar "

"bool ean”

"octet"

any
" Chj ect”

<struct_header> "{" <menber_list> "}"
<member >+

<type_spec> <declarators> ";" | <ann_appl > <type_spec>

<declarator> ";" <ann_appl _post>

<ann_appl > "union" <identifier> "switch" "("
<swi tch_type_spec> ")"
"{" <switch_body> "}"

<ann_appl > <swi tch_type_nanme> <ann_appl _post >

<case>+
<case_| abel >+ <el enent _spec> ";" <ann_appl _post >
"case" <const_exp> ":" | "default" ":"

<ann_appl > <type_spec> <decl ar at or >

<ann_appl > "enunt' <identifier> "{

<ann_appl > <identifier>

<enunerator> { ","
<ann_appl _post > <enunerator> }* <ann_appl _post> "}"

& PRISMTECH

1 Description and Use

<seguence_t ype>

<string_type>
<wi de_string_type>
<array_decl arat or >

<fixed_array_size>
<attr_dcl >

<except _dcl >
<op_dcl >

<op_attribute>
<op_t ype_spec>
<par anet er _dcl s>

<par am dcl >

1.5 IDL Pre-processor Grammar

"sequence" "<" <ann_appl > <sinple_type_spec>

<ann_appl _post > <positive_int_const> ">" | "sequence" "<"
<ann_appl > <si npl e_type_spec> <ann_appl _post> ">"
"string" "<" <positive_int_const> ">" | "string"

"wstring" "<" <positive_int_const> ">" | "wstring"

<identifier> <ann_appl > <ann_appl _post >
<fixed_ array_size>+

u[-v <p03i t i Ve_i nt _ConSt > u] "
<readonly_attr_spec> | <attr_spec>
"exception" <identifier> "{" <menber>* "}"

[<op_attribute>] <op_type_spec> <identifier> <paraneter_dcl s>

[<raises_expr>1] [<context_expr>]

"oneway"
<paramtype_spec> | "void"
"(" <paramdcl> { "," <paramdcl> }* ")" | "(" ")"

<param. attribute> <param type_spec> <sinpl e_decl arat or>

<param attri but e> "in" | "out" | "inout"

<rai ses_expr> (1= "raises" "(" <scoped_nane> { "," <scoped_nanme> }* ")"

<cont ext _expr > ;o= "context" "(" <string_literal>{ "," <string_literal>}* ")"
<param type_spec> .= <base_type_spec> | <string_ type> | <w de_string_type>

| <scoped_name>

<fixed_pt_type> ci= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"
<fixed_pt_const_type> o= "fixed"

<val ue_base_t ype> ;= "Val ueBase"

<constr_forward_decl > ;= "struct" <identifier>| "union" <identifier>

<i nport > c:="inport" <inmported_scope> ";"

<i nport ed_scope> ;.= <scoped_nanme> | <string_ literal>

15

The IDL Pre-processor A PRISMTECH

1 Description and Use

<type_id_dcl >
<t ype_prefix_dcl >
<readonly_attr_spec>

<readonly_attr_decl arator >

<attr_spec>
<attr_decl arat or >

<attr_rai ses_expr>

<get _excep_expr >

<set _excep_expr>
<exception_|list>
<conponent >

<conponent _forward_dcl >
<comnponent _dcl >
<component _header >

<supported_i nterface_spec>

<conponent _i nheritance_spec>::

<conponent _body>
<conponent _export >

<provi des_dcl >
<interface_type>
<uses_dcl >

The IDL Pre-processor

1.5 IDL Pre-processor Grammar

"typei d" <scoped_nanme> <string_literal >
"typeprefix" <scoped_nanme> <string_literal >

"readonly" "attribute" <paramtype_spec>
<readonly_attr_decl arat or>

<si npl e_decl ar at or > <rai ses_expr>
| <sinple_declarator> { "," <sinple_declarator> }*

"attribute" <paramtype_spec> <attr_decl arator>

<sinpl e_decl arator> <attr_rai ses_expr>
| <sinple_declarator> { "," <sinple_declarator> }*

<get _excep_expr> [<set_excep_expr>]

| <set_excep_expr>

"getrai ses" <exception_list>

"setraises" <exception_list>

"(" <scoped_name> { "," <scoped_nane>} * ")"
<conponent _dcl > | <conponent _forward_dcl >
"conponent" <identifier>

<conponent _header> "{" <conponent _body> "}"

"conponent” <identifier> [<conponent_inheritance_spec>]
[<supported_interface_spec>]

"supports" <scoped_name> { "," <scoped_nanme> }*
":" <scoped_nanme>
<comnponent _export >*

<provides_dcl> ";" | <uses_dcl> ";" | <emits_dcl> ";"
| <publishes_dcl> ";" | <consumes_dcl> ";" | <attr_dcl> ";"

"provides" <interface_type> <identifier>
<scoped_nanme> | "Object"
"uses" ["multiple"] < interface_type> <identifier>

& PRISMTECH

1 Description and Use

<em ts_dcl >
<publ i shes_dcl >
<consunes_dcl >
<home_dcl >

<home_header >

<home_i nheri t ance_spec>
<primary_key_spec>

1.5 IDL Pre-processor Grammar

"emts" <scoped_name> <identifier>
"publ i shes" <scoped_nane> <identifier>
"consumes" <scoped_nane> <identifier>
<hone_header > <hone_body>

"hone" <identifier> [<home_inheritance_spec>]
[<supported_interface_spec>] "manages" <scoped_nane>
[<primary_key_spec>]

<scoped_name>
"primarykey" <scoped_nane>

<h0rTE_b0dy> T= "{" <h0rre_export>* u}u
<home_export ;1= <export> | <factory_dcl>";" | <finder_dcl>";"
<factory_dcl > ;.= "factory" <identifier>"(" [<init_paramdecls>] ")"

[<raises_expr>]

<finder _dcl > c:="finder" <identifier> "(" [<init_paramdecls>1] ")"
[<raises_expr>]

<event > i1 = (<event _dcl > | <event_abs_dcl > | <event_forward_dcl >)

<event _f orward_dcl > ::=["abstract"] "eventtype" <identifier>

<event _abs_dcl > ©1= "abstract" "eventtype" <identifier>

[<value_inheritance_spec>] "{" <export>* "}"

<event _dcl > ::= <event _header> "{" <val ue_el ement>* "}"

<event _header > o= "custon'] "eventtype" <identifier>
[<val ue_i nheritance_spec>]

<identifier> .. = Arbitrarily long sequence of ASCII alphabetic, numeric and underscore characters. The
first character must be ASCII alphabetic. All characters are significant. An identifier
may be escaped with a prepended underscore character to prevent collisions with new
IDL keywords. The underscore does not appear in the generated output.

17

The IDL Pre-processor A PRISMTECH

1 Description and Use 1.5 IDL Pre-processor Grammar

Key Definitions
The OpenSplice DDS IDL Pre-processor also provides a mechanism to define alist
of keys (space or comma separated) with a specific data type. The syntax for that
definition is:

#pragma keyli st <data-type-nane> <key>*

The identifier <dat a-t ype- name> is the identification of a struct or a union
definition.
The identifier <key> is the member of a struct. For a struct either no key list is
defined, in which case no speciaized interfaces (TypeSupport , Dat aReader and
Dat aW i t er) are generated for the struct, or a key list with or without keysis
defined, in which case the specialized interfaces are generated for the struct. For a
union either no key list is defined, in which case no specialized interfaces are
generated for the union, or a key list without keys is defined, in which case the
specialized interfaces are generated for the union. It is not possible to define keys
for a union because a union case may only be addressed when the discriminant is set
accordingly, nor is it possible to address the discriminant of a union. The keylist
must be defined in the same name scope or module as the referred struct or union.

Supported typesfor keys
OpenSplice DDS supports following types as keys:
* short
* long
* long long
* unsigned short
* unsigned long
* unsigned long long
* float
* double
* char
* boolean
* octet
* string
* bounded string
* enum
« char array (provided that #pr agma cat s is specified, see 1.5.1.2 below)
OpenSplice DDS also supports typedef for these types.

18

The IDL Pre-processor A PRISMTECH

1 Description and Use 1.5 IDL Pre-processor Grammar

Character arraysasKeys

& PRISMTECH

By default OpenSplice DDS does not support using a character array as akey. Using
an (character) array as akey field is not desirable or supported, because:

1. Everyindex inthearray must be considered a separate key in this situation. This
is the only way that arrays can be compared to each other in a correct manner.
An array of ten characters would have to be treated as a ten-dimensional storage
structure, leading to poor performance compared with the processing of a
(bounded) string of ten characters.

2. Anarray aways has afixed length and therefore the whole array is sent over the
wire even if only asmall part of it is needed. When using a (bounded) string,
only the actual string is sent and not the maximum length.

However, in certain scenarios a character array is the logical key for atopic, either
from an information modeling perspective or simply due to alegacy data model. To
facilitate such scenarios OpenSplice DDS introduces the following pragma which
allows for character arrays to be used as a key.

#pragma cats <data-type-nane> <char-array-fiel d- nane>*

The identifier <dat a- t ype- nanme> is the identification of a struct definition. The
identifier <char - array-fi el d- name> is the member of a struct with the type
character array. The cat s pragma must be defined in the same name scope or
module as the referred struct.

This pragma ensures that each character array listed for the specified struct
definition istreated as a string type internally within OpenSplice DDS and operates
exactly like aregular string. This alows the character array to be used as a key for
the data type, because as far as OpenSplice DDS is concerned the character array is
in fact a string. On the API level (e.g., generated code) the character array is
maintained so that applications will be able to use the field as a regular character
array as normal. Be aware that listing a character array here does not promote the
character array to a key of the data type; the regular keylist pragma must still be
used for that. In effect this pragma can be used to let any character array be treated
as astring internally, although that is not by definition desirable.

When a character array is mapped to a string internally by using the cat s pragma,
the product behaves as follows:

1. If the character array does not have a'\ 0' terminator, the middleware will add a
"\ 0' terminator internally and then remove it again in the character array that is
presented to a subscribing application. In other words, a character array used in
combination with the cat s pragma does not need to define a"\ 0' terminator as
one of its elements.

19
The IDL Pre-processor

1 Description and Use 1.6 Bounded stringsascharacter arrays

20

2. If the character array does have a '\ 0' terminator, the middleware will only
process the characters up to the first element containing the '\ 0' character; all
other characters are ignored. The middleware will present the character array
with the same '\ 0' terminator to a subscribing application and any array
elements following that "\ 0' terminator will contain \O' terminators as well; i.e.,
any array elementsfollowing a'\ 0' element are ignored.

The following table shows some examples using the cat s pragma for a character
array with asize of 4.

Character array written |Internal string Character array read
(by publishing application) | representation (By subscribing
(Internal OpenSplice data) |application)
["a','b,'c,'d] "abcd" ["a','b','c,"d]
["a','b,"'¢c,"\0] "abc" [*a','b,'c',"\0]
["a','b,"\0,'d] "ab" ["a,'b,"\0,'\0"]

Bounded stringsas character arrays

In some use cases a large number of (relatively small) strings may be used in the
data model, and because each string is a reference type, it meansthat it is not stored
inline in the data model but instead as a pointer. This will result in separate
alocations for each string (and thus a performance penalty when writing data) and a
dlight increase in memory usage due to pointers and (memory storage) headers for
each string.

The OpenSplice DDS IDL Pre-Processor features a special pragma called st ac
which can be utilized in such use cases. This pragma enables you to indicate that
OpenSplice DDS should store strings internally as character arrays (but on the AP
level they are still bounded strings). Because a character array has afixed size, the
pragmast ac only affects bounded strings. By storing the strings internally as a
character array the number of allocations is reduced and less memory is used. This
is most effective in a scenario where atypical string has arelatively small size, i.e.
less than 100 characters.

Using the pragma st ac on bounded strings results in the limitation that those
strings can no longer be utilized in queries. It also results in the maximum size of the
bounded string to be used each time, therefore the pragma st ac isless suitable
when the string has a large bound and does not always use up the maximum space
when filled with data. A bounded string that is also mentioned in the pragma
keyl i st can not be listed for pragma st ac, as transforming those strings to an
array would violate the rule that an array can not be a keyfield.

#pragm stac <data-type-nane> [[!]bounded-string-fiel dnane]*

& PRISMTECH

The IDL Pre-processor

1 Description and Use 1.7 Modes, Languages and Processing steps

The identifier <dat a-t ype- nanme> isthe identification of a struct definition. The
identifier [[!] bounded-string-fiel d-nanme] isthe member of astruct with
the type bounded string. The st ac pragma must be defined in the same name scope
or module asthe referred struct. If no field names are listed, then all bounded strings
will be treated as character arraysinternaly. If only a subset of the struct membersis
targeted for transformation then these members can be listed explicitly one by one.
Preceeding afield namewitha‘! ’ character indicates that the listed member should
not be considered for transformation from bounded string to character array.
Member names with and without the ‘! ' character may not be mixed within ast ac
pragma for a specific struct as this has no relevant meaning. This pragma ensures
that each bounded string listed for the specified struct definition is treated as a
character array type internally within OpenSplice DDS and operates exactly like a
regular bounded string. On the API level (i.e., generated code) the bounded string is
maintained so that applications will be able to use the field as a regular bounded
string.

M odes, L anguages and Processing steps
Integrated C++ ORB

& PRISMTECH

The generic diagram for the ORB integrated C++ context is shown in Figure 2. The
OpenSplice DDS IDL Pre-processor generates IDL code for the specialized
TypeSupport, Dat aReader and Dat aW it er, aswell as C++ implementations
and support code. The ORB pre-processor generates from the generated 1DL
interfaces the C++ specialized interfaces for that specific ORB. These interfaces are
included by the application C++ code as well as the OpenSplice DDS generated
specialized C++ implementation code. The application C++ code as well as the
specialized C++ implementation code (with the support functions) is compiled into
object code and linked together with the applicable OpenSplice libraries and the
ORSB libraries.

OpenSplice DDS libraries are provided for linking with TAO OpenFusion. However
the source code of the C++ API is also available to build against your own ORB
and/or compiler version.

21
The IDL Pre-processor

1 Description and Use 1.7 Modes, Languages and Processing steps

Application IDL data plice IDL -
types cessor

A 4
OpenSplice interface OpenSplice generated e-processor
(IDL) include Foo interfaces (IDL)

»
* include
Application C++ code OpenSplice Foo C++ < ORB generated
include | implementation code and Application datatypes and
< support functions Foo C++ interfaces

1 “

Application object code OpenSplice Foo
implementation and support
functions object code

A 4
OpenSplice libraries ORB libraries

Application executable

Figure2 Integrated C++ ORB
The role of the OpenSplice DDS IDL Pre-processor functionality is expanded in
Figure 3. It shows in more detail which files are generated, given an input file (in
thisexamplef oo. i dl).

| fompem=h |

Figure3 Integrated C++ ORB OpenSplice DDSIDL Pre-processor Details

The file f oo. h isthe only file that needs to be included by the application. It
includes al files needed by the application to interact with the DCPS interface.

22

The IDL Pre-processor & PRisMTECH

1 Description and Use 1.7 Modes, Languages and Processing steps

Thefilef ooDcps. i dl isan IDL definition of the specialized TypeSupport,
DataReader and DataWriter interfaces, which will be used to generate ORB specific
C++ interfacefiles.

Thef ooDcps_i npl . * files contain the specialized TypeSuppor t , Dat aReader
and Dat aW i t er implementation classes needed to communicate the type via
OpenSplice DDS.

Thef ooSpl Deps. * files contain support functions required by OpenSplice DDSin
order to be able to handle the specific data types.

C++ Sandalone

The C++ standalone mode provides an OpenSplice DDS context which does not
need an ORB. OpenSplice DDSresolves all implied IDL to C++ language mapping
functions and requirements. The only difference when using the standalone mode is
that DDS is used as the naming scope for definitions and functions instead of the
CORBA naming scope’.

Figure 4 is an overview of the artifacts and processing stages related to the C
standalone context. For C++ the different stages are equal to the C standalone
context. Because there is no ORB involved, all pre-processing is performed by the
OpenSplice DDS IDL Pre-processor. The generated specialized implementations
and the application’s C++ code must be compiled into object code, plus all objects
must be linked with the appropriate OpenSplice DDS libraries.

|SOC++

The ISOC++ mode provides an OpenSplice DDS context which does not need an
ORB. OpenSplice DDS resolves all implied IDL-to-C++ language mapping
functions and requirements. Much like C++ standalone mode, the CORBA naming
scope is not used but substituted C99 types are used in place of DDS: : types, as
specified in the ISO/IEC C++ 2003 Language DDS PSM.

C Sandalone

& PRISMTECH

The C standalone made provides an OpenSplice DDS context which does not need
an ORB. OpenSplice DDS resolves all implied IDL to C language mapping
functions and requirements. The only difference when using the standalone mode is
that DDS is used as the naming scope for definitions and functions.

Figure 4 shows an overview of the artifacts and processing stages related to the C
standal one context. Because there is no ORB involved, all the pre-processing is
done by the OpenSplice DDS IDL Pre-processor. The generated specialized class
implementations and the application’s C code must be compiled into object code,
plus all objects must be linked with the appropriate OpenSplice DDS libraries.

1. The CORBA namespaceis till supported, for compatibility purposes.

23
The IDL Pre-processor

1 Description and Use 1.7 Modes, Languages and Processing steps

Application IDL data Splice IDL
types ocessor

Application C code C application data types Foo classes and support

<« P functions

Application object code Foo classes and support
functions object code

i) ;
include include

OpenSplice libraries

Application executable

Figure4 C Sandalone

The role of the OpenSplice DDS IDL Pre-processor functionality is expanded in
Figure 5, providing more detail about the files generated when provided with an
input file (f oo. i dl thisexample).

[- W - —

Figure5 C Sandalone OpenSplice DDSIDL Pre-processor Details

Thefilef oo. h isthe only file that needs to be included by the application. It itself
includes all necessary files needed by the application in order to interact with the
DCPS interface.

The file f ooDcps. h contains all definitions related to the IDL input file in
accordance with the OMG’s C Language Mapping Specification (IDL to C).

24

The IDL Pre-processor & PRisMTECH

1 Description and Use

1.7 Modes, Languages and Processing steps

Thef ooSacDeps.* files contain the specialized TypeSupport , Dat aReader and
Dat aW i t er classes needed to communicate the type via OpenSplice DDS.

Thef ooSpl Deps. * files contain support functions required by OpenSplice DDSin
order to be able to handle the specific data types.

1.7.5 Java Sandalone

& PRISMTECH

The Java standal one mode provides a OpenSplice DDS context without the need of
an ORB, which still enables portability of application code because all IDL Java
language mapping implied functions and requirements are resolved by OpenSplice
DDS.

Figure 6 shows an overview of the artifacts and processing stages related to the Java
standal one context. The OpenSplice DDS IDL Pre-processor generates the
application data classes from DL according the language mapping. The OpenSplice
DDS IDL Pre-processor additionally generates classes for the specialized
TypeSupport, Dat aReader and Dat aW i t er interfaces. All generated code must
be compiled with the Java compiler as well as the application Java code.

Application IDL data
types

Splice IDL
rocessor

import import

y

Foo classes

Application intermediate Java application data Foo classes intermediate
code interm ediate code code

Application Java code Java application data

classes

A A

OpenSplice libraries Virtual Machine

Application process

Figure 6 Java Sandalone
The role of the OpenSplice DDS IDL Pre-processor functionality is more magnified
in Figure 7. It shows in more detail which files are generated based upon input file
(inthisexamplef oo. i dl).

25
The IDL Pre-processor

1 Description and Use 1.8 Built-inDDSdatatypes

26

ArdicationICLceta
types (foaid)

Figure 7 Java Sandalone OpenSplice IDL Pre-Processor Details

Integrated Java ORB

The Java CORBA mode provides an OpenSplice DDS context for the JacORB
ORB. The OpenSplice DDS IDL Pre-processor generates IDL code for the
specialized TypeSupport, Dat aReader and Dat aW it er, as well as Java
implementations and support code. The ORB pre-processor generates the Java ' Foo’
classes, which must be done manually. These classes are included with the
application Java code as well as the OpenSplice DDS generated specialized Java
implementation code. The application Java code as well as the specialized Java
implementation code (with the support functions) is compiled into class files and
can be used together with the applicable OpenSplice libraries and the ORB libraries.

The artifacts and processing stages related to the Java CORBA cohabitation context
are similar to those of the standalone mode, with one exception: the ‘ Foo classes
will not be generated by the OpenSplice DDS IDL Pre-processor. Instead these
classes should be generated by the JacORB IDL Pre-processor.

Built-in DDS data types

The OpenSplice DDS IDL Pre-processor and the OpenSplice DDS runtime system
supports the following DDS data types to be used in application IDL definitions:

e Duration_t

e Tine_t

When building C or Java application programs, no special actions have to be taken

other than enabling the OpenSplice DDS IDL Pre-processor built-in DDS data types
usingthe- o dds-types option.

For C++, however, attention must be paid to the ORB IDL compiler, which is also
involved in the application building process. The ORB IDL compiler is not aware of
any DDS data types, so the supported DDS types must be provided by means of
inclusion of an IDL file (dds_dcps. i dl) that defines these types. This file must

& PRISMTECH

The IDL Pre-processor

1 Description and Use 1.8 Built-inDDSdatatypes

not be included for the OpenSplice DDS IDL Pre-processor, which has the type
definitions built-in. Therefore dds_dcps. i dl must be included conditionally. The
condition can be controlled via the macro definition OSPL_| DL_COVPI LER, which
is defined when the OpenSplice DDS IDL Pre-processor is invoked, but not when
the ORB IDL compiler isinvoked:

#i fndef OSPL_I DL_COWPI LER
#i ncl ude <dds_dcps.idl >
#endi f

nodul e exanpl e {
struct exanple_struct {
DDS:: Time_ttine;
s
s
The ORB IDL compiler must be called with the - | $OSPL_HOVE/ et ¢/ i dI pp
option in order to define the include path for the dds_dcps. i dl file. The
OpenSplice DDS IDL Pre-processor must be called without this option.

27
A PRISMTECH The IDL Pre-processor

1 Description and Use 1.8 Built-inDDSdatatypes

28

PRISMTECH
The IDL Pre-processor k4 Pris

BIBLIOGRAPHY

Bibliography

The following documents are referred to in the text:

[1] Data Distribution Service for Real-Time Systems Specification, Final Adopted Specification,
ptc/04-04-12, Object Management Group (OMG).

[2] The Common Object Request Broker: Architecture and Specification, Version 3.0,
formal/02-06-01, OMG

[3] C Language Mapping Specification, Version 1.0, formal/99-07-35, OMG

[4] C++ Language Mapping Specification, Version 1.1, formal/03-06-03, OMG

[5] Java Language Mapping Specification, Version 1.2, formal/02-08-05, OMG

[6] ISO/IEC C++ 2003 Language DDSPSM, Version 1.0, formal/2013-11-01, OMG

31
IDL Pre-processor Guide

& PRISMTECH

Bibliography

32

. & PRISMTECH
IDL Pre-processor Guide

GLOSSARY

Glossary

Acronyms
Acronym Meaning
ASCII American Standard Code for Information Interchange

BOF Business Object Facility
CORBA Common Object Request Broker Architecture
COS Common Object Services
DCPS Data Centric Publish Subscribe
DDS Data Distribution System
EBNF Extended Backus-Naur Format
IDL Interface Definition Language
OMG Object Management Group
ORB Object Request Broker
& PRISMTECH %

IDL Pre-processor Guide

Glossary

36

. & PRISMTECH
IDL Pre-processor Guide

INDEX

| nd ex

B

Built-inDDS datatypes. 26

C

CStandalone.................. ... 23,24 Details. 24
C Standalone OpenSplice IDL Pre-processor

IDL Pre-processor Command Line Options. 5 Integrated C++ ORB OpenSplice IDL

IDL Pre-processor Grammer 9 Pre-processor Details 22
IntegratedC++ORB 21,22 Introductionc...iiiiiii 3

JavaStandalone 25 Details. 26
Java Standalone OpenSplice IDL Pre-Processor

K

Key Definitions 18
Modes, Languages and Processing steps 21
Prerequisites. 4
Supported Modesand Languages. 9
& PRISMTECH 39

IDL Pre-processor Guide

Index

40

IDL Pre-processor Guide A4 PRISMTECH

	IDL Pre-processor Guide
	Table of Contents
	Preface
	About the IDL Pre-processor Guide
	Contacts

	The IDL Pre-processor
	1 Description and Use
	1.1 Introduction
	1.2 Prerequisites
	1.3 IDL Pre-processor Command Line Options
	1.4 OpenSplice DDS Modes and Languages
	1.5 IDL Pre-processor Grammar
	1.5.1 Key Definitions
	1.5.1.1 Supported types for keys
	1.5.1.2 Character arrays as Keys

	1.6 Bounded strings as character arrays
	1.7 Modes, Languages and Processing steps
	1.7.1 Integrated C++ ORB
	1.7.2 C++ Standalone
	1.7.3 ISOC++
	1.7.4 C Standalone
	1.7.5 Java Standalone
	1.7.6 Integrated Java ORB

	1.8 Built-in DDS data types

	Bibliography
	Glossary
	Index

