
OpenSplice DDS
Version 6.x

Deployment Guide
�������	

OpenSplice DDS
DEPLOYMENT GUIDE
Part Number: OS-DG Doc Issue 60, 31 January 2014
PRISMTECH

Copyright Notice
© 2014 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Deployment Guide

�������	

CONTENTS

Table of Contents

Preface
About the Deployment Guide .xvii
Contacts . xviii

Deploying OpenSplice DDS
Chapter 1 OpenSplice DDS Overview 3

1.1 The OpenSplice DDS Architecture . 3
1.1.1 Single Process architecture . 4
1.1.2 Shared Memory architecture . 5
1.1.3 Comparison of Deployment Architectures . 6
1.1.4 Configuring and Using the Deployment Architectures 7
1.2 OpenSplice DDS Usage. 8
1.2.1 Starting OpenSplice DDS for a Single Process Deployment 8
1.2.2 Starting OpenSplice DDS for a Shared Memory Deployment 8
1.2.3 Monitoring . 9
1.2.3.1 Diagnostic Messages . 9
1.2.3.2 OpenSplice Tuner . 9
1.2.3.3 OpenSplice Memory Management Statistics Monitor 10
1.2.4 Stopping OpenSplice DDS . 10
1.2.4.1 Stopping a Single Process deployment. 10
1.2.4.2 Stopping a Shared Memory deployment . 10
1.2.4.2.1 Stopping OSPL by using signals . 10
1.2.4.2.2 Stopping Applications in Shared Memory Mode 11
1.2.5 Deploying OpenSplice DDS on VxWorks 6.x . 12
1.2.6 Deploying OpenSplice DDS on Integrity . 12
1.2.7 Installing/Uninstalling the OpenSplice DDS C# Assembly
 to the Global Assembly Cache . 12
1.2.7.1 Installing the C# Assembly to the Global Assembly Cache. 12
1.2.7.2 Uninstalling the C# Assembly from the Global Assembly Cache 13
1.3 OpenSplice DDS Configuration. 14
1.3.1 Configuration Files . 14
1.3.2 Environment Variables . 15
1.3.2.1 The OSPL_URI environment variable . 15
1.3.3 Configuration of Single Process deployment . 15
v
Deployment Guide

�������	

Table of Contents
1.3.4 Configuration of Shared Memory deployment . 16
1.3.5 Temporary Files. 16
1.4 Applications which operate in multiple domains. 17
1.4.1 Interaction with a Networking Service . 17

Chapter 2 The OpenSplice DDS Services 19
2.1 Introduction . 19
2.2 The Domain Service . 19
2.3 The Durability Service . 20
2.3.1 Purpose . 20
2.3.2 Concepts . 21
2.3.2.1 Role and scope . 21
2.3.2.2 Name-spaces. 21
2.3.2.3 Name-space policies . 23
2.3.2.3.1 Alignment policy . 23
2.3.2.3.2 Durability policy . 24
2.3.2.3.3 Delayed alignment policy . 24
2.3.2.3.4 Merge policy . 25
2.3.2.4 Dynamic name-spaces . 26
2.3.2.5 Master/slave . 27
2.3.3 Mechanisms . 28
2.3.3.1 Interaction with other durability services . 28
2.3.3.2 Interaction with other OpenSplice services . 28
2.3.3.3 Interaction with applications . 29
2.3.3.4 Parallel alignment . 29
2.3.3.5 Tracing . 30
2.3.4 Lifecycle . 31
2.3.4.1 Determine connectivity. 31
2.3.4.2 Determine compatibility . 31
2.3.4.3 Master selection . 32
2.3.4.4 Persistent data injection . 32
2.3.4.5 Discover historical data . 33
2.3.4.6 Align historical data . 34
2.3.4.7 Provide historical data . 34
2.3.4.8 Merge historical data . 34
2.4 The Networking Service. 34
2.4.1 The Native Networking Service . 35
2.4.2 The Secure Native Networking Service . 35
2.5 The DDSI2 and DDSI2E Networking Services . 35
2.5.1 DDSI Concepts . 36
2.5.1.1 Mapping of DCPS domains to DDSI domains. 36
2.5.1.2 Mapping of DCPS entities to DDSI entities. 37
vi
Deployment Guide �������	

Table of Contents
2.5.1.3 Reliable communication . 37
2.5.1.4 DDSI-specific transient-local behaviour . 38
2.5.1.5 Discovery of participants & endpoints . 38
2.5.2 OpenSplice DDSI2 specifics . 39
2.5.2.1 Translating between OpenSplice and DDSI . 39
2.5.2.2 Federated versus Standalone deployment. 40
2.5.2.3 Discovery behaviour . 40
2.5.2.3.1 Local discovery and built-in topics . 40
2.5.2.3.2 Proxy participants and endpoints. 41
2.5.2.3.3 Sharing of discovery information . 42
2.5.2.3.4 Lingering writers . 43
2.5.2.3.5 Start-up mode. 43
2.5.2.4 Writer history QoS and throttling . 44
2.5.2.5 Unresponsive readers & head-of-stream blocking 45
2.5.2.6 Handling of multiple partitions and wildcards . 46
2.5.2.6.1 Publishing in multiple partitions . 46
2.5.2.6.2 Wildcard partitions . 46
2.5.3 Network and discovery configuration . 46
2.5.3.1 Networking interfaces. 46
2.5.3.1.1 Multicasting . 48
2.5.3.1.2 Discovery configuration . 48
2.5.3.2 Combining multiple participants . 50
2.5.3.3 Controlling port numbers . 51
2.5.3.4 Coexistence with OpenSplice RTNetworking . 52
2.5.4 Data path configuration . 52
2.5.4.1 Data path architecture . 52
2.5.4.2 Transmit-side configuration . 54
2.5.4.2.1 Transmit processing. 54
2.5.4.2.2 Retransmit merging . 54
2.5.4.2.3 Retransmit backlogs. 55
2.5.4.2.4 Controlling fragmentation . 56
2.5.4.3 Receive-side configuration . 56
2.5.4.3.1 Receive processing . 56
2.5.4.3.2 Minimising receive latency . 58
2.5.4.4 Direction-independent settings . 58
2.5.4.4.1 Maximum sample size . 58
2.5.5 DDSI2E Enhanced features . 59
2.5.5.1 Introduction. 59
2.5.5.2 Channel configuration . 59
2.5.5.2.1 Overview . 59
2.5.5.2.2 Transmit side . 60
2.5.5.2.3 Receive side . 61
vii
Deployment Guide

�������	

Table of Contents
2.5.5.2.4 Discovery traffic . 62
2.5.5.2.5 On interoperability. 62
2.5.5.3 Network partition configuration . 62
2.5.5.3.1 Overview . 62
2.5.5.3.2 Matching rules . 62
2.5.5.3.3 Multiple matching mappings . 63
2.5.5.3.4 On interoperability. 63
2.5.5.4 Encryption configuration . 63
2.5.5.4.1 Overview . 63
2.5.5.4.2 On interoperability. 63
2.5.6 Thread configuration . 63
2.5.7 Reporting and tracing . 65
2.5.8 Compression . 66
2.5.8.1 Availability . 66
2.5.8.2 How to set the level parameter in zlib . 66
2.5.8.3 How to switch to other built-in compressors . 67
2.5.8.4 How to write a plugin for another compression library 67
2.5.8.5 How to configure for a plugin . 69
2.5.8.6 Constraints . 69
2.5.9 Compatibility and conformance . 69
2.5.9.1 Conformance modes . 69
2.5.9.1.1 Compatibility issues with RTI. 70
2.5.9.1.2 Compatibility issues with TwinOaks. 71
2.6 The Tuner Service . 72
2.7 The DbmsConnect Service. 72
2.7.1 Usage . 73
2.7.1.1 DDS and DBMS Concepts and Types Mapping . 73
2.7.1.2 General DbmsConnect Concepts . 75
2.7.1.3 DDS to DBMS Use Case . 75
2.7.1.4 DBMS to DDS Use Case . 77
2.7.1.5 Replication Use Case . 78

Chapter 3 Tools 81
3.1 Introduction . 81
3.2 osplconf: the OpenSplice Configuration editor . 82
3.3 ospl: the OpenSplice service manager . 85
3.4 mmstat: Memory Management Statistics. 86
3.4.1 The memory statistics mode . 86
3.4.2 The memory statistics difference mode. 87
3.4.3 The meta-object references mode . 88
3.4.4 The meta-object references difference mode. 90
viii
Deployment Guide �������	

Table of Contents
Chapter 4 Service Configuration 93
4.1 Introduction. 93
4.2 The Domain Service . 94
4.2.1 Element Id . 95
4.2.2 Element Name . 96
4.2.3 Element CPUAffinity . 96
4.2.4 Element Role . 97
4.2.5 Element Lease . 98
4.2.5.1 Element ExpiryTime. 98
4.2.5.1.1 Attribute update_factor . 99
4.2.6 Element ServiceTerminatePeriod . 99
4.2.7 Element SingleProcess. 100
4.2.8 Element Database . 101
4.2.8.1 Element Size . 101
4.2.8.2 Element Threshold . 102
4.2.8.3 Element Address . 102
4.2.8.4 Element Locking. 103
4.2.9 Element Service . 104
4.2.9.1 Attribute name . 104
4.2.9.2 Attribute enabled . 105
4.2.9.3 Element Command . 105
4.2.9.4 Element MemoryPoolSize . 106
4.2.9.5 Element HeapSize. 107
4.2.9.6 Element StackSize . 107
4.2.9.7 Element Configuration . 108
4.2.9.8 Element Scheduling . 108
4.2.9.8.1 Element Class . 109
4.2.9.8.2 Element Priority. 109
4.2.9.9 Element Locking. 110
4.2.9.10 Element FailureAction . 111
4.2.10 Element Application . 111
4.2.10.1 Attribute name . 112
4.2.10.2 Attribute enabled . 112
4.2.10.3 Element Command . 112
4.2.10.4 Element Library . 113
4.2.10.5 Element Arguments . 114
4.2.11 Element Listeners . 114
4.2.11.1 Element StackSize . 114
4.2.12 Element BuiltinTopics . 115
4.2.12.1 Attribute enabled . 115
4.2.13 Element PriorityInheritance. 116
ix
Deployment Guide

�������	

Table of Contents
4.2.13.1 Attribute enabled . 116
4.2.14 Element Statistics . 116
4.2.14.1 Element Category . 117
4.2.14.1.1 Attribute name . 117
4.2.14.1.2 Attribute enable . 117
4.2.15 Element ReportPlugin . 118
4.2.15.1 Element Library . 118
4.2.15.1.1 Attribute file_name . 118
4.2.15.2 Element Initialize . 119
4.2.15.2.1 Attribute symbol_name . 119
4.2.15.2.2 Attribute argument. 120
4.2.15.3 Element Report . 120
4.2.15.3.1 Attribute symbol_name . 120
4.2.15.4 Element TypedReport. 121
4.2.15.4.1 Attribute symbol_name . 121
4.2.15.5 Element Finalize . 122
4.2.15.5.1 Attribute symbol_name . 122
4.2.15.6 Element SuppressDefaultLogs . 123
4.2.16 Element PartitionAccess . 123
4.2.16.1 Attribute partition_expression . 124
4.2.16.2 Attribute access_mode . 125
4.2.17 Element TopicAccess . 125
4.2.17.1 Attribute topic_expression . 126
4.2.17.2 Attribute access_mode . 126
4.2.18 Element ResourceLimits . 127
4.2.18.1 Element MaxSamples . 128
4.2.18.1.1 Element WarnAt . 128
4.2.18.2 Element MaxInstances . 128
4.2.18.2.1 Element WarnAt . 129
4.2.18.3 Element MaxSamplesPerInstance . 129
4.2.18.3.1 Element WarnAt . 129
4.2.19 Element Report . 130
4.2.19.1 Attribute append . 130
4.2.19.2 Attribute verbosity . 130
4.2.20 Element Daemon . 131
4.2.20.1 Element Locking. 132
4.2.20.2 Element KernelManager. 133
4.2.20.2.1 Element Scheduling. 133
4.2.20.3 Element GarbageCollector . 135
4.2.20.3.1 Element Scheduling. 135
4.2.20.4 Element ResendManager . 137
4.2.20.4.1 Element Scheduling. 137
x
Deployment Guide �������	

Table of Contents
4.2.20.5 Element Watchdog . 139
4.2.20.5.1 Element Scheduling . 139
4.2.20.6 Element Heartbeat . 141
4.2.20.6.1 Attribute transport_priority . 141
4.2.20.6.2 Element ExpiryTime . 141
4.2.20.6.3 Element Scheduling . 142
4.2.21 Element GeneralWatchdog . 144
4.2.21.1 Element Scheduling . 144
4.2.21.1.1 Element Class . 145
4.2.21.1.2 Element Priority. 145
4.2.22 Element UserClockService . 146
4.2.22.1 Element UserClockModule . 146
4.2.22.2 Element UserClockStart . 147
4.2.22.2.1 Attribute name . 147
4.2.22.3 Element UserClockStop . 147
4.2.22.3.1 Attribute name . 148
4.2.22.4 Element UserClockQuery. 148
4.2.22.4.1 Attribute name . 148
4.3 The Durability Service . 149
4.3.1 Attribute name . 149
4.3.2 Element Network . 150
4.3.2.1 Attribute latency_budget . 150
4.3.2.2 Attribute transport_priority. 151
4.3.2.3 Element Heartbeat . 151
4.3.2.3.1 Attribute latency_budget . 152
4.3.2.3.2 Attribute transport_priority . 152
4.3.2.3.3 Element ExpiryTime . 153
4.3.2.3.4 Element Scheduling . 154
4.3.2.4 Element InitialDiscoveryPeriod . 155
4.3.2.5 Element Alignment . 156
4.3.2.5.1 Attribute latency_budget . 157
4.3.2.5.2 Attribute transport_priority . 157
4.3.2.5.3 Element TimeAlignment . 157
4.3.2.5.4 Element AlignerScheduling. 158
4.3.2.5.5 Element AligneeScheduling . 159
4.3.2.5.6 Element RequestCombinePeriod . 161
4.3.2.5.7 Element TimeToWaitForAligner. 163
4.3.2.6 Element WaitForAttachment . 164
4.3.2.6.1 Attribute maxWaitCount . 164
4.3.2.6.2 Element ServiceName . 164
4.3.3 Element Persistent . 165
4.3.3.1 Element StoreDirectory . 165
xi
Deployment Guide

�������	

Table of Contents
4.3.3.2 Element StoreMode . 166
4.3.3.3 Element StoreSessionTime. 167
4.3.3.4 Element StoreSleepTime . 167
4.3.3.5 Element StoreOptimizeInterval . 168
4.3.3.6 Element Scheduling . 168
4.3.3.6.1 Element Class . 168
4.3.3.6.2 Element Priority. 169
4.3.3.7 Element MemoryMappedFileStore . 170
4.3.3.7.1 Element Size . 170
4.3.3.7.2 Element Address . 171
4.3.3.8 Element SmpCount. 171
4.3.3.9 Element KeyValueStore . 172
4.3.3.9.1 Attribute type. 172
4.3.3.9.2 Element ConfigParameters . 173
4.3.4 Element NameSpaces . 175
4.3.4.1 Element NameSpace. 176
4.3.4.1.1 Attribute name . 176
4.3.4.1.2 Element Partition . 176
4.3.4.1.3 Element PartitionTopic . 177
4.3.4.2 Element Policy . 177
4.3.4.2.1 Attribute nameSpace . 178
4.3.4.2.2 Attribute delayedAlignment . 178
4.3.4.2.3 Element Merge . 179
4.3.4.2.4 Attribute durability . 180
4.3.4.2.5 Attribute alignee . 181
4.3.4.2.6 Attribute aligner. 182
4.3.5 Element Watchdog . 183
4.3.5.1 Element Scheduling . 183
4.3.5.1.1 Element Class . 184
4.3.5.1.2 Element Priority. 184
4.3.6 Element EntityNames . 185
4.3.6.1 Element Publisher. 185
4.3.6.2 Element Subscriber. 186
4.3.6.3 Element Partition . 186
4.3.7 Element Tracing . 187
4.3.7.1 Attribute synchronous. 187
4.3.7.2 Element OutputFile. 187
4.3.7.3 Element Timestamps . 188
4.3.7.3.1 Attribute Absolute . 188
4.3.7.4 Element Verbosity . 189
4.4 The Network and the Secure Network Service . 189
4.4.1 The Network Service . 189
xii
Deployment Guide �������	

Table of Contents
4.4.1.1 Attribute name . 190
4.4.1.2 Element Watchdog . 191
4.4.1.2.1 Element Scheduling . 191
4.4.1.3 Element General . 193
4.4.1.3.1 Element NetworkInterfaceAddress . 193
4.4.1.3.2 Element Reconnection . 195
4.4.1.3.3 Element EnableMulticastLoopback. 195
4.4.1.4 Element Partitioning . 196
4.4.1.4.1 Element GlobalPartition . 197
4.4.1.4.2 Element NetworkPartitions . 198
4.4.1.4.3 Element IgnoredPartitions . 201
4.4.1.4.4 Element PartitionMappings . 202
4.4.1.5 Element Channels . 204
4.4.1.5.1 Element Channel . 204
4.4.1.5.2 Element AllowedPorts . 224
4.4.1.6 Element Discovery . 224
4.4.1.6.1 Attribute enabled . 225
4.4.1.6.2 Attribute Scope . 226
4.4.1.6.3 Element PortNr . 226
4.4.1.6.4 Element ProbeList . 227
4.4.1.6.5 Element Sending . 227
4.4.1.6.6 Element Receiving. 231
4.4.1.7 Element Tracing . 234
4.4.1.7.1 Element OutputFile . 234
4.4.1.7.2 Element Timestamps . 235
4.4.1.7.3 Element Categories . 235
4.4.1.8 Element Compression. 241
4.4.1.8.1 Attribute PluginLibrary . 242
4.4.1.8.2 Attribute PluginInitFunction . 242
4.4.1.8.3 Attribute PluginParameter . 242
4.4.2 The Secure Network Service . 243
4.4.2.1 Element Partitioning . 243
4.4.2.1.1 Element GlobalPartition . 244
4.4.2.1.2 Element NetworkPartitions . 245
4.4.2.2 Element Security. 248
4.4.2.2.1 Attribute enabled . 248
4.4.2.2.2 Element SecurityProfile. 248
4.4.2.2.3 Element AccessControl . 251
4.4.2.2.4 Element Authentication . 253
4.5 The Tuner Service. 255
4.5.1 Attribute name . 256
4.5.2 Element Client . 256
xiii
Deployment Guide

�������	

Table of Contents
4.5.2.1 Element LeasePeriod . 256
4.5.2.2 Element MaxClients . 257
4.5.2.3 Element MaxThreadsPerClient. 257
4.5.2.4 Element Scheduling . 258
4.5.2.4.1 Element Class . 258
4.5.2.4.2 Element Priority. 259
4.5.3 Element Server . 259
4.5.3.1 Element Backlog. 260
4.5.3.2 Element PortNr . 260
4.5.3.3 Element Verbosity . 261
4.5.4 Element GarbageCollector . 261
4.5.4.1 Element Scheduling . 261
4.5.4.1.1 Element Class . 262
4.5.4.1.2 Element Priority. 262
4.5.5 Element LeaseManagement. 263
4.5.5.1 Element Scheduling . 263
4.5.5.1.1 Element Class . 264
4.5.5.1.2 Element Priority. 264
4.5.6 Element Watchdog . 265
4.5.6.1 Element Scheduling . 265
4.5.6.1.1 Element Class . 266
4.5.6.1.2 Element Priority. 266
4.6 The DbmsConnect Service. 267
4.6.1 Attribute name . 267
4.6.2 Element DdsToDbms . 268
4.6.2.1 Attribute replication_mode. 268
4.6.2.2 Element NameSpace. 269
4.6.2.2.1 Attribute dsn . 269
4.6.2.2.2 Attribute usr. 270
4.6.2.2.3 Attribute pwd. 270
4.6.2.2.4 Attribute name . 270
4.6.2.2.5 Attribute partition . 271
4.6.2.2.6 Attribute topic . 271
4.6.2.2.7 Attribute schema . 271
4.6.2.2.8 Attribute catalog . 272
4.6.2.2.9 Attribute replication_mode . 272
4.6.2.2.10 Attribute update_frequency . 273
4.6.2.2.11 Attribute odbc . 273
4.6.2.2.12 Element Mapping . 274
4.6.3 Element DbmsToDds . 275
4.6.3.1 Attribute event_table_policy . 276
4.6.3.2 Attribute publish_initial_data . 277
xiv
Deployment Guide �������	

Table of Contents
4.6.3.3 Attribute replication_user . 277
4.6.3.4 Attribute trigger_policy . 278
4.6.3.5 Element NameSpace . 278
4.6.3.5.1 Attribute dsn . 279
4.6.3.5.2 Attribute usr . 279
4.6.3.5.3 Attribute pwd . 280
4.6.3.5.4 Attribute name . 280
4.6.3.5.5 Attribute partition . 280
4.6.3.5.6 Attribute table . 281
4.6.3.5.7 Attribute schema . 281
4.6.3.5.8 Attribute catalog . 282
4.6.3.5.9 Attribute force_key_equality . 282
4.6.3.5.10 Attribute event_table_policy . 282
4.6.3.5.11 Attribute publish_initial_data . 283
4.6.3.5.12 Attribute replication_user . 283
4.6.3.5.13 Attribute trigger_policy . 284
4.6.3.5.14 Attribute update_frequency . 285
4.6.3.5.15 Attribute odbc . 285
4.6.3.5.16 Element Mapping. 286
4.6.4 Element Tracing. 289
4.6.4.1 Element OutputFile. 290
4.6.4.2 Element Timestamps . 290
4.6.4.2.1 Attribute Absolute . 290
4.6.4.3 Element Verbosity . 291
4.6.5 Element Watchdog. 291
4.6.5.1 Element Scheduling . 292
4.6.5.1.1 Element Class . 292
4.6.5.1.2 Element Priority. 292
4.7 The DDSI2 and DDSI2 Enhanced Networking Service 293
4.7.1 The DDSI2 Networking Service . 293
4.7.1.1 Element DDSI2Service. 293
4.7.1.1.1 Attribute name . 295
4.7.1.1.2 Element Threads . 295
4.7.1.1.3 Element Sizing. 298
4.7.1.1.4 Element Compatibility. 300
4.7.1.1.5 Element Discovery. 305
4.7.1.1.6 Element Tracing. 312
4.7.1.1.7 Element Internal. 315
4.7.1.1.8 Element Watchdog. 333
4.7.1.1.9 Element General . 335
4.7.1.1.10 Element TCP . 341
4.7.1.1.11 Element ThreadPool . 343
xv
Deployment Guide

�������	

Table of Contents
4.7.2 The DDSI2 Enhanced Networking Service. 344
4.7.2.1 Element DDSI2EService . 345
4.7.2.1.1 Attribute name . 346
4.7.2.1.2 Element Channels . 346
4.7.2.1.3 Element Security . 350
4.7.2.1.4 Element Partitioning . 352
4.7.2.1.5 Element Internal . 357
4.8 Record and Replay (RnR) Service . 358
4.8.1 Attribute name . 358
4.8.2 Element Watchdog . 358
4.8.2.1 Element Scheduling . 359
4.8.2.1.1 Element Priority. 359
4.8.3 Element Storage. 360
4.8.3.1 Attribute name . 361
4.8.3.2 Element rr_storageAttrXML . 361
4.8.3.2.1 Element filename. 361
4.8.3.3 Element rr_storageAttrCDR. 362
4.8.3.3.1 Element filename. 362
4.8.3.4 Element Statistics . 362
4.8.3.4.1 Attribute enabled . 362
4.8.3.4.2 Attribute publish_interval . 363
4.8.3.4.3 Attribute reset . 363
4.8.4 Element Tracing . 364
4.8.4.1 Attribute OutputFile . 364
4.8.4.2 Attribute AppendToFile . 364
4.8.4.3 Attribute Verbosity . 365
4.8.4.4 Attribute EnableCategory . 365
4.9 Example Reference Systems . 366
4.9.1 Zero Configuration System . 366
4.9.2 Single Node System. 366
4.9.3 Medium Size Static (Near) Real-time System. 367
4.9.3.1 High Volumes. 367
4.9.3.2 Low Latencies. 367
4.9.3.3 Responsiveness. 368
4.9.3.4 Topology Discovery . 368
xvi
Deployment Guide �������	

Preface
About the Deployment Guide

The OpenSplice DDS Deployment Guide is intended to provide a complete
reference on how to configure the OpenSplice service and tune it as required.
The Deployment Guide is included with the OpenSplice DDS Documentation Set.
The Deployment Guide is intended to be used after reading and following the
instructions in the OpenSplice Getting Started. Guide.

Intended Audience
The Deployment Guide is intended to be used by anyone who wishes to use and
configure the OpenSplice DDS service.

Organisation
Chapter 1, OpenSplice DDS Overview, gives a general description of the
OpenSplice architecture.
Chapter 2, The OpenSplice DDS Services describes how OpenSplice provides
integration of real-time DDS and the non-/near-real-time enterprise DBMS
domains.
Chapter 3, Tools, introduces the OpenSplice system management tools.
Chapter 4, Service Configuration. describes how to configure the OpenSplice
daemons.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Deployment Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific.
C++ language specific.
C# language specific.
Java language specific.
Hypertext links are shown as blue italic underlined.

i
WIN

UNIX

C
C++
 C#
Java
xvii
Deployment Guide

�������	

Preface
On-Line (PDF) versions of this document: Items shown as cross references (e.g.
Contacts on page xviii) act as hypertext links: click on the reference to go to the
item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Sans-serif and Sans-serif Bold are used to indicate elements of a Graphical User
Interface (GUI) or Integrated Development Environment (IDE), such as a Properties
tab, and sequences of actions, such as selecting File > Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xviii
Deployment Guide

�������	

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

DEPLOYING

OPENSPLICE DDS

CHAPTER

1 OpenSplice DDS Overview
This chapter explains the OpenSplice DDS middleware from a configuration
perspective. It shows the different components running on a single node and briefly
explains the role of each entity. Furthermore, it defines a reference system that will
be used throughout the rest of the document as an example.

1.1 The OpenSplice DDS Architecture
OpenSplice DDS is highly configurable, even allowing the architectural structure of
the DDS middleware to be chosen by the user at deployment time. OpenSplice DDS
can be configured to run using a so-called ‘federated’ shared memory architecture,
where both the DDS related administration (including the optional pluggable
services) and DDS applications interface directly with shared memory.
Alternatively, OpenSplice DDS also supports a so-called ‘standalone’ single
process architecture, where one or more DDS applications, together with the
OpenSplice administration and services, can all be grouped into a single operating
system process. Both deployment modes support a configurable and extensible set
of services, providing functionality such as:
• networking - providing QoS-driven real-time networking based on multiple

reliable multicast ‘channels’
• durability - providing fault-tolerant storage for both real-time state data as well as

persistent settings
• remote control and monitoring SOAP service - providing remote web-based

access using the SOAP protocol from various OpenSplice tools
• dbms service - providing a connection between the real-time and the enterprise

domain by bridging data from DDS to DBMS and vice versa
The OpenSplice DDS middleware can be easily configured, on the fly, using its
pluggable service architecture: the services that are needed can be specified together
with their configuration for the particular application domain, including networking
parameters, and durability levels for example).
There are advantages to both the single process and shared memory deployment
architectures, so the most appropriate deployment choice depends on the user’s
exact requirements and DDS scenario.
3
 Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.1 The OpenSplice DDS Architecture

1.1.1 Single Process architecture
This deployment allows the DDS applications and OpenSplice administration to be
contained together within one single operating system process. This ‘standalone’
single process deployment option is most useful in environments where shared
memory is unavailable or undesirable. As dynamic heap memory is utilized in the
single process deployment environment, there is no need to pre-configure a shared
memory segment which in some use cases is also seen as an advantage of this
deployment option.
Each DDS application on a processing node is implemented as an individual,
self-contained standalone operating system process (i.e. all of the DDS
administration and necessary services have been linked into the application
process). This is known as a single process application. Communication between
multiple single process applications co-located on the same machine node is done
via the (loop-back) network, since there is no memory shared between them.
An extension to the single process architecture is the option to co-locate multiple
DDS applications into a single process. This can be done be creating application
libraries rather than application executables that can be ‘linked’ into the single
process in a similar way to how the DDS middleware services are linked into the
single process. This is known as a single process application cluster.
Communication between clustered applications (that together form a single process)
can still benefit from using the process’s heap memory, which typically is an order
of magnitude faster than using a network, yet the lifecycle of these clustered
applications will be tightly coupled.
The Single Process deployment is the default deployment architecture provided
within OpenSplice and allows for easy deployment with minimal configuration
required for a running DDS system.
Figure 1 shows an overview of the single process architecture of OpenSplice DDS.
4
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.1 The OpenSplice DDS Architecture

Figure 1 The OpenSplice ‘standalone’ Single Process Architecture

1.1.2 Shared Memory architecture
In the ‘federated’ shared memory architecture data is physically present only once
on any machine but smart administration still provides each subscriber with his own
private view on this data. Both the DDS applications and OpenSplice
administration interface directly with the shared memory which is created by the
OpenSplice daemon on start up. This architecture enables a subscriber's data cache
to be seen as an individual database and the content can be filtered, queried, etc. by
using the OpenSplice content subscription profile.
Typically for advanced DDS users, the shared memory architecture is a more
powerful mode of operation and results in extremely low footprint, excellent
scalability and optimal performance when compared to the implementation where
each reader/writer are communication end points each with its own storage (i.e.
historical data both at reader and writer) and where the data itself still has to be
moved, even within the same platform.
Figure 2 shows an overview of the shared memory architecture of OpenSplice DDS
on one computing node. Typically, there are many nodes within a system.

Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Shared-memory Application ‘Cluster’Single Process ApplicationSingle Process Application

networknetwork

Application codeApplication code
OpenSplice-lib

In-process Heap MemoryIn-process Heap Memory

Disk
(XML/Binary)

Disk
(XML/Binary)

Config
(XML)
Config
(XML)

OpenSplice-lib

DomainDomain
Service Threads

OpenSplice-lib

Network/DDSI2Network/DDSI2
Service Threads

OpenSplice-lib

DurabilityDurability
Service Threads

OpenSplice-lib

TunerTuner
Service Threads

OpenSplice-lib

DBMSDBMS
Service Threads

RDBMS
(database)
RDBMS
(database)

Spliced-lib Spliced-lib Spliced-libSpliced-libSpliced-lib

Spliced-libTUNER
OpenSplice
5
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.1 The OpenSplice DDS Architecture

Figure 2 The OpenSplice ‘federated’ Shared Memory Architecture

1.1.3 Comparison of Deployment Architectures

Simple when sufficient, Performant when required
The choice between the ‘federated’ or ‘standalone’ deployment architecture is
basically about going for out-of-the-box simplicity or for maximum performance:

Federated Application Cluster
• Co-located applications share a common set of pluggable services (daemons)
• Resources (e.g. memory/networking) are managed per ‘federation’
• Added value: performance (scalability and determinism)

Figure 3 Federated Application Cluster

Computing NodeComputing Node

networknetwork

App-1 ProcessApp-1 Process

OpenSplice-libSpliced-lib

App-2 ProcessApp-2 Process

OpenSplice-lib

App-3 ProcessApp-3 Process

OpenSplice-lib

Shared MemoryShared Memory

Disk
(XML/Binary)

Disk
(XML/Binary)

Config
(XML)
Config
(XML)

OpenSplice-lib

DomainDomain
Service Process

OpenSplice-lib

Network/DDSI2Network/DDSI2
Service Process

OpenSplice-lib

DurabilityDurability
Service Process

OpenSplice-lib

TunerTuner
Service Process

OpenSplice-lib

DBMSDBMS
Service Process

RDBMS
(database)
RDBMS
(database)

Spliced-lib Spliced-lib

Spliced-libSpliced-libSpliced-libSpliced-libSpliced-lib

TUNER
OpenSplice

Shared Memory

Networking
service

App App App

DBMS
service

Durability
service
6
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.1 The OpenSplice DDS Architecture

Non-federated,’single process’ Applications
• Each application links the required DDS services as libraries into a standalone

‘single process’
• Resources are managed by each individual application
• Added value: Ease-of-use (‘zero-configuration’, middleware lifecycle is simply

coupled to that of the application process)

Figure 4 Non-federated, ‘single process’ Applications

1.1.4 Configuring and Using the Deployment Architectures
The deployment architecture choice between a shared-memory federation or a
standalone ‘single process’ is a runtime choice driven by a simple single
configuration parameter in the domain configuration xml file:

<SingleProcess>true</SingleProcess>

Note that there is absolutely no need to recompile or even re-link an application
when selecting or changing the deployment architecture.
The deployment modes can be mixed at will, so even on a single computing node,
one could have some applications that are deployed as a federation as well as other
applications that are deployed as individual 'single processes'.
To facilitate the ‘out-of-the-box’ experience, the default ospl.xml configuration
file specifies the standalone ‘single process’ deployment architecture where the
middleware is simply linked as libraries into an application: no need to configure
shared-memory, no need to ‘fire up’ OpenSplice first to start the related services.
The middleware lifecycle (and with that the information lifecycle) is directly
coupled to that of the application.
When, with growing system scale, scalability and determinism require efficient
sharing of memory and networking resources, the deployment architecture can be
switched easily to the federated archtirecture; thereafter the middleware and
application(s) lifecycles are decoupled and a single set of services facilitate the
federation of applications with regard to scheduling data transfers over the wire
(based upon the actual importance and urgency of each published data-sample),

DDS
service

libs

App

DDS
service

libs

App

DDS
service

libs

App
7
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

maintaining data for late joining applications (on the same or other nodes in the
system) and efficient (single-copy) sharing of all data within the computing node
regardless of the number of applications in the federation.
The OpenSplice DDS distribution contains multiple example configuration files that
exploit both deployment architectures. Configurations that exploit the
single-process architecture start with ospl_sp_ whereas federated-deployment
configurations start with ospl_shmem_.

1.2 OpenSplice DDS Usage
The OpenSplice environment has to be set up to instruct the node where executables
and libraries can be found in order to be able to start the Domain Service.
On UNIX-like platforms this can be realized by starting a shell and sourcing the
release.com file located in the root directory of the OpenSplice installation:

On the Windows platform the environment must be set up by running
release.bat, or else the OpenSplice DDS Command Prompt must be used.

1.2.1 Starting OpenSplice DDS for a Single Process Deployment
For ‘standalone’ single process deployment, there is no need to start the OpenSplice
DDS middleware before starting the DDS application, since the application itself
will implicitly start the library threads of OpenSplice Domain Service and
associated services at the point when the DDS create_participant operation is
invoked by the standalone application process.

1.2.2 Starting OpenSplice DDS for a Shared Memory Deployment
For a shared memory deployment, it is necessary to start the OpenSplice DDS
Domain Service prior to running a DDS application. The ospl command-tool is
provided to manage OpenSplice DDS for shared memory deployments. To start
OpenSplice DDS in this way, enter:

This will start the Domain Service using the default configuration.
NOTE: The Integrity version of OpenSplice DDS does not include the ospl
program. Instead there is a project generator, ospl_projgen, which generates
projects containing the required address spaces which will auto-start when loaded.
Please refer to the Getting Started Guide for details.

% . ./release.com

% ospl start
8
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

NOTE: The VxWorks version of OpenSplice DDS does not include the ospl
program. Please refer to the Getting StartedGuide for details of how to use VxWorks
projects and Real Time Processes to deploy OpenSplice DDS applications.

1.2.3 Monitoring
The OpenSplice Domain Service can be monitored and tuned in numerous ways
after it has been started. The monitoring and tuning capabilities are described in the
following subsections.

1.2.3.1 Diagnostic Messages
OpenSplice outputs diagnostic information. This information is written to the
ospl-info.log file located in the start-up directory, by default. Error messages
are written to the ospl-error.log file, by default. The state of the system can be
determined from the information written into these files.
The location where the information and error messages are stored can be overridden
by setting the OSPL_LOGPATH environment variable to a location on disk (by
specifying a path), to standard out (by specifying <stdout>) or to standard error (by
specifying <stderr>). The names of these log files can also be changed by setting the
OSPL_INFOFILE and OSPL_ERRORFILE variables.
OpenSplice also accepts the environment properties OSPL_VERBOSITY and
OSPL_LOGAPPEND. These provide an alternate method of specifying values for
Attribute append and Attribute verbosity of the Domain/Report configuration
element. See Section 4.2.19, Element Report, on page 130.
Values specified in the domain configuration override the environment values.

1.2.3.2 OpenSplice Tuner
The intention of OpenSplice Tuner, ospltun, is to provide facilities for monitoring
and controlling OpenSplice, as well as the applications that use OpenSplice for the
distribution of data. The OpenSplice Tuner User Guide specifies the capabilities of
OpenSplice Tuner and describes how they should be used.
Note that the Tuner will only be able to connect to the memory running in a
particular DDS Domain by being ran on a node that is already running OpenSplice
DDS using the shared memory deployment mode.
The Tuner will also be able to monitor and control a Domain ran as a single process
if the Tuner itself is started as the single process application with other DDS
applications clustered in the process by deploying as a single process application
cluster. Please refer to Section 4.2.10, Element Application, on page 111, for a
description of how to cluster applications together in a single process.
9
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

1.2.3.3 OpenSplice Memory Management Statistics Monitor
The OpenSplice Memory Management Statistics Tool, mmstat, provides a
command line interface that allows monitoring the status of the nodal shared
administration (shared memory) used by the middleware and the applications. Use
the help switch (mmstat -h) for usage information. Please refer to Section 3.4,
mmstat: Memory Management Statistics, on page 86, for detailed information about
mmstat.
Please note that mmstat is only suitable for diagnostic purposes, and its use is only
applicable in shared memory mode.

1.2.4 Stopping OpenSplice DDS

1.2.4.1 Stopping a Single Process deployment
When deployed as a single process, the application can either be terminated
naturally when the end of the main function is reached, or stopped prematurely by
means of a signal interrupt, for example Ctrl-C. In either case, the OpenSplice DDS
middleware running within the process will be stopped and the process will
terminate.

1.2.4.2 Stopping a Shared Memory deployment
In shared memory deployment mode, the OpenSplice Domain Service can be
stopped by issuing the following command on the command-line.

The OpenSplice Domain Service will react by announcing the shutdown using the
shared administration. Applications will not be able to use DDS functionality
anymore and services will terminate elegantly. Once this has succeeded, the Domain
Service will destroy the shared administration and finally terminate itself.

1.2.4.2.1 Stopping OSPL by using signals
Alternatively the OpenSplice DDS domain service can also be stopped by sending a
signal to the ospl process, assuming the process was started using the -f option. For
example, on Unix you could use the following command to send a termination
signal to the ospl tool, where pid identifies the ospl tool pid:
.

Sending such a signal will cause the ospl tool to exit gracefully, properly
terminating all services and exiting with returncode 0.

% ospl stop

% kill –SIGTERM <pid>
10
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

The following table shows a list of all POSIX signals and what the behavior of
OSPL is when that signal is sent to the ospl tool.

1.2.4.2.2 Stopping Applications in Shared Memory Mode
Applications that are connected to and use OpenSplice DDS in shared memory
mode must not be terminated with a KILL signal. This will ensure that OpenSplice
DDS shared memory always remains in a valid, functional state.
When OpenSplice applications terminate naturally, a cleanup mechanism is
executed that releases any references held to the shared memory within OpenSplice
which that application was using. This mechanism will be executed even when an
application is terminated by other means, e.g. by terminating with Ctrl+C, or even if
the application crashes in the user code.

Signal Default
action

OSPL action Description

SIGHUP Term. Graceful exit Hang up on controlling process
SIGINT Term. Graceful exit Interrupt from keyboard
SIGQUIT Core Graceful exit Quit from keyboard
SIGILL Core Graceful exit Illegal instruction
SIGABRT Core Graceful exit Abort signal from abort function
SIGFPE Core Graceful exit Floating point exception
SIGKILL Term. Term. Kill signal (can't catch, block, ignore)
SIGSEGV Core Graceful exit Invalid memory reference
SIGPIPE Term. Graceful exit Broken pipe: write to pipe with no readers
SIGALRM Term. Graceful exit Timer signal from alarm function
SIGTERM Term. Graceful exit Termination signal
SIGUSR1 Term. Graceful exit User defined signal 1
SIGUSR2 Term. Graceful exit User defined signal 2
SIGCHLD Ignore Ignore A child process has terminated or stopped
SIGCONT Ignore Ignore Continue if stopped
SIGSTOP Stop Stop Stop process (can't catch, block, ignore)
SIGTSTOP Stop Graceful exit Stop typed at tty
SIGTTIN Stop Graceful exit Tty input for background process
SIGTTOUT Stop Graceful exit Tty output for background process
11
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

The cleanup mechanisms are not executed when an application is terminated with a
KILL signal. For this reason a user must not terminate an application with a
kill -9 command (or, on Windows, must not use TaskManager’s End Process
option) because the process will be forcibly removed and the cleanup mechanisms
will be prevented from executing. If an application is killed in this manner, the
shared memory regions of OpenSplice will become inconsistent and no recovery
will then be possible other than re-starting OpenSplice and all applications on the
node.

1.2.5 Deploying OpenSplice DDS on VxWorks 6.x
The VxWorks version of OpenSplice DDS does not include the ospl program.
Please refer to Chapter 7 of the Getting StartedGuide for details of how to use
VxWorks projects and Real Time Processes to deploy OpenSplice DDS
applications.

1.2.6 Deploying OpenSplice DDS on Integrity
The Integrity version of OpenSplice DDS does not include the ospl program.
Instead there is a project generator, ospl_projgen, which generates projects
containing the required address spaces which will auto-start when loaded. Please
refer to Chapter 8 of the Getting Started Guide for detailed information about
OpenSplice deployment on Integrity.

1.2.7 Installing/Uninstalling the OpenSplice DDS C# Assembly to the Global
Assembly Cache

The installer for the commercial distribution of OpenSplice DDS includes the option
to install the C# Assembly to the Global Assembly Cache during the installation
process. If you chose to omit this step, or you are an open source user, then you
should follow the instructions in the next few paragraphs, which describe how to
manually install and uninstall the assembly to the Global Assembly Cache.

1.2.7.1 Installing the C# Assembly to the Global Assembly Cache
To install an assembly to the Global Assembly Cache, you need to use the
gacutil.exe tool. Start a Visual Studio command prompt and type:

where <OpenSpliceDDS installation path> is the installation path of the
OpenSplice DDS distribution. If you are successful you will see a message similar
to the following:

% gacutil /i <OpenSpliceDDS installation
path>\bin\dcpssacsAssembly.dll
12
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.2 OpenSplice DDS Usage

1.2.7.2 Uninstalling the C# Assembly from the Global Assembly Cache
To uninstall an assembly from the Global Assembly Cache, you need to use the
gacutil.exe tool. Start a Visual Studio command prompt and type:

The version number of the assembly is defined in the <OpenSpliceDDS
installation path>\etc\RELEASEINFO file, in the CS_DLL_VERSION
variable.
If you are successful you will see a message similar to the following:

% C:\Program Files\Microsoft Visual Studio 9.0\VC>gacutil.exe /i
"C:\Program Files \PrismTech\OpenSpliceDDS\V5.1.0\HDE\x86.win32\
bin\dcpssacsAssembly.dll"

%

% Microsoft (R) .NET Global Assembly Cache Utility. Version
3.5.30729.1

% Copyright (c) Microsoft Corporation. All rights reserved.

%

% Assembly successfully added to the cache

%

% C:\Program Files\Microsoft Visual Studio 9.0\VC>

% gacutil /u dcpssacsAssembly,Version=<version_number_goes_here>

% C:\Program Files\Microsoft Visual Studio 9.0\VC>gacutil /u
dcpssacsAssembly,Version=5.1.0.14734

% Microsoft (R) .NET Global Assembly Cache Utility. Version
3.5.30729.1

% Copyright (c) Microsoft Corporation. All rights reserved.

%

% Assembly: dcpssacsAssembly, Version=5.1.0.14734,
Culture=neutral, PublicKeyToken=5b9310ab51310fa9,
processorArchitecture=MSIL
13
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.3 OpenSplice DDS Configuration

If you do not specify a version to the uninstall option, then all installed OpenSplice
DDS C# Assemblies in the GAC, called dcpssacsAssembly, will be removed
from the GAC, so take care with this option as it can adversely affect any deployed
applications that rely on other versions of these assemblies.
We strongly recommend that every time you uninstall an OpenSplice DDS C#
Assembly you specify the version you want to uninstall.

1.3 OpenSplice DDS Configuration
Each application domain has its own characteristics. Therefore OpenSplice allows
configuring a wide range of parameters that influence its behaviour to be able to
achieve optimal performance in every situation. This section describes generally
how to instruct OpenSplice to use a configuration that is different from the default.
This requires the creation of a custom configuration file and an instruction to the
middleware to use this custom configuration file.

1.3.1 Configuration Files
OpenSplice expects the configuration to be defined in the XML format. The
expected syntax and semantics of the configuration parameters will be discussed
further on in this document. Within the context of OpenSplice, a reference to a
configuration is expressed in the form of a Uniform Resource Identifier (URI).
C u r r e n t l y, o n l y f i l e U R I s a r e s u p p o r t (f o r e x a m p l e
file:///opt/ospl/config/ospl.xml).
When OpenSplice is started, the Domain Service parses the configuration file using
the provided URI. According to this configuration, it creates the DDS
administration and initialises it. After that, the Domain Service starts the configured
services. The Domain Service passes on its own URI to all services it starts, so they
will also be able to resolve their configuration from this resource as well. (Of
course, it is also possible to configure a different URI for each of the services, but

% Uninstalled: dcpssacsAssembly, Version=5.1.0.14734,
Culture=neutral, PublicKeyToken=5b9310ab51310fa9,
processorArchitecture=MSIL

% Number of assemblies uninstalled = 1

% Number of failures = 0

%

% C:\Program Files\Microsoft Visual Studio 9.0\VC>
14
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.3 OpenSplice DDS Configuration

usually one configuration file for all services will be the most convenient option.)
The services will use default values for the parameters that have not been specified
in the configuration.

1.3.2 Environment Variables
The OpenSplice middleware will read several environment variables for different
purposes. These variables are mentioned in this document at several places. To some
extent, the user can customize the OpenSplice middleware by adapting the
environment variables.
When specifying configuration parameter values in a configuration file,
environment variables can be referenced using the notation ${VARIABLE}. When
parsing the XML configuration, the Domain Service will replace the symbol with
the variable value found in the environment.

1.3.2.1 The OSPL_URI environment variable
The environment variable OSPL_URI is a convenient mechanism to pass the
configuration file to the Domain Service and DDS applications. The variable will
refer to the default configuration that comes with OpenSplice DDS but of course can
be overridden to refer to a customer configuration.
For single process mode operation this variable is required; see also Section 1.1.1,
Single Process architecture, on page 4, and Section 4.2.7, Element SingleProcess,
on page 100.
On Linux/Unix-based platforms, this variable can be initialized by sourcing the
release.com script that is created by the OpenSplice installer.
On Windows platforms, this variable may already be initialized in your environment
by the Windows installer. Alternatively, it can be set by executing the supplied
release.bat script or the OpenSplice DDS Command Prompt.

1.3.3 Configuration of Single Process deployment
A single process deployment is enabled when the OSPL_URI environment variable
refers to an XML configuration containing the <SingleProcess> attribute within
the Domain section. See section 4.2.7 on page 100 for full details. In such a
deployment, each OpenSplice DDS service including the Domain Service will be
started as threads within the existing application process.
In this case there is no need to start the OpenSplice DDS administration manually
since this is implicitly handled within the DDS code when the application first
invokes the DDS create_participant operation. Since the OSPL_URI
environment variable describes the OpenSplice system, there is no requirement to
pass any OpenSplice DDS configuration parameters to the application.
15
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.3 OpenSplice DDS Configuration

1.3.4 Configuration of Shared Memory deployment
In order to have OpenSplice start with a custom configuration file, use:

where URI denotes the URI of the Domain Service configuration file. In order to
stop a specific OpenSplice instance, the same mechanism holds. Use:

Several instances of OpenSplice can run simultaneously, as long as their
configurations specify different domain names. Typically, only one instance of the
middleware is needed. Multiple instances of the middleware are only required when
one or more applications on the computing node participate in different or multiple
DDS Domains. At any time, the system can be queried for all running OpenSplice
instances by using the command:

To stop all active OpenSplice Domains, use:

Note that the <URI> parameter to the above commands is not required if the
OSPL_URI environment variable refers to the configuration that is intended to be
started or stopped.

1.3.5 Temporary Files
Please note that for a shared memory deployment, OpenSplice uses temporary files
that are used to describe the shared memory that has been created. The exact nature
of these files varies according to the operating system; however, the user does not
need to manipulate these files directly.
On Linux systems the location of the temp files is /tmp by default, while on
Windows the location is the value of the TEMP (or TMP if TEMP is not set)
environment variable. These location can be over-ridden, if required, by setting the
OSPL_TEMP variable to a location on disk by specifying a path. Please note,
however, that this must be consistent for all environments on a particular node.

% ospl start <URI>

% ospl stop <URI>

% ospl list

% ospl -a stop
16
Deploying OpenSplice DDS

�������	

1 OpenSplice DDS Overview 1.4 Applications which operate in multiple domains

1.4 Applications which operate in multiple domains
OpenSplice can be configured to allow a DDS application to operate in multiple
domains.
Please note that an application operating in multiple domains is currently only
supported in shared memory deployments.
In order to achieve multi-domain operation, the host node for the application must
run OpenSplice instances for every domain in which applications on that node will
interact. For example, if an application A wants to operate in domains X, Y and Z
then the node on which application A operates must run appropriate services for X,
Y and Z.
OpenSplice utilises shared memory regions for intra-node communication. Each
domain running on a node must have its own shared memory region, and
subsequently the shared memory region for each domain that an application wants
to operate within must be mapped into that application's virtual address space. The
mapping must occur at a virtual address in memory that is common to both the
OpenSplice daemon (and any services) for that domain and the application itself.
This requires some thought when configuring multiple OpenSplice domains on a
single node. Care must be taken to ensure that the XML configuration files contain
unique and non-overlapping addresses for the shared memory mapping (see the
XML element "OpenSplice/Domain/Database/Address" in section 4.2.8.3,
Element Address, on page 102).
When designing and coding applications, care must also be taken with regard to
usage of the default domain. If a domain is not explicitly identified in the
application code, then appropriate steps must be taken at deployment in order to
ensure that applications operate in the domain they were intended to.

1.4.1 Interaction with a Networking Service
Where multiple domains are running on a single node, each domain must run its
own instance of a networking service if that domain is to participate in remote
communication.
• Each domain should have its own pre-determined port numbers configured in the

XML for that domain.
• These port numbers must be common for that domain across the system.
17
Deploying OpenSplice DDS�������	

1 OpenSplice DDS Overview 1.4 Applications which operate in multiple domains

18
Deploying OpenSplice DDS

�������	

CHAPTER

2 The OpenSplice DDS Services
2.1 Introduction

The OpenSplice DDS middleware and its services can be configured using easy to
maintain XML files. These services are described in the following sections, and the
XML configuration is described in detail in Chapter 4, Service Configuration.
The OpenSplice DDS middleware includes several services: each service has a
particular responsibility. Figure 2 on page 6 shows the services included with
OpenSplice DDS. Each service can be enabled or disabled. The services can be
configured or tuned to meet the optimum requirements of a particular application
domain (noting that detailed knowledge of the requirement is needed for effective
tuning).
The following sections briefly explain each of the services and their responsibilities.

2.2 The Domain Service
The Domain Service is responsible for creating and initialising the database which is
used by the administration to manage the DDS data.
In the single process architecture the Domain Service is started as a new thread
within the DDS application. This is done implicitly when the application invokes
the DDS create_participant operation and no such service currently exists
within the process. The Domain Service creates the DDS database within the heap
memory of the process and so is limited only to the maximal heap that the operating
system supports.
In the shared memory architecture, the user is responsible for managing the DDS
administration separately from the DDS application. In this mode, the Domain
Service is started as a separate process; it then creates and initialises the database by
allocating a particular amount of shared memory as dictated by the configuration.
Without this administration, no other service or application is able to participate in
the DDS Domain.
In either deployment mode, once the database has been initialised, the Domain
Service starts the set of pluggable services. In single process mode these services
will be started as threads within the existing process, while in shared memory mode
the services will be represented by new separate processes that can interface with
the shared memory segment.
19
 Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

When a shutdown of the OpenSplice Domain Service is requested in shared memory
mode, it will react by announcing the shutdown using the shared administration.
Applications will not be able to use DDS functionality anymore and services are
requested to terminate elegantly. Once this has succeeded, the Domain Service will
destroy the shared administration and finally terminate itself.
The exact fulfilment of these responsibilities is determined by the configuration of
the Domain Service. There is an overview of the available configuration parameters
and their purpose in Section 4.2, The Domain Service, on page 94.

2.3 The Durability Service
This section provides a description the most important concepts and mechanisms of
the current durability service implementation, starting with a description of the
purpose of the service. After that all its concepts and mechanisms are described.
The exact fulfilment of the durability responsibilities is determined by the
configuration of the Durability Service. There is an overview of the available
configuration parameters and their purpose in Section 4.3, The Durability Service,
on page 149.

2.3.1 Purpose
OpenSplice DDS will make sure data is delivered to all ‘compatible’ subscribers
that are available at the time the data is published using the ‘communication paths’
that are implicitly created by the middleware based on the interest of applications
that participate in the domain. However, subscribers that are created after the data
has been published (called late-joiners) may also be interested in the data that was
published before they were created (called historical data). To facilitate this use
case, DDS provides a concept called durability in the form of a Quality of Service
(DurabilityQosPolicy).
The DurabilityQosPolicy prescribes how published data needs to be maintained by
the DDS middleware and comes in four flavours:
VOLATILE — Data does not need to be maintained for late-joiners (default).
TRANSIENT_LOCAL — Data needs to be maintained for as long as the DataWriter is

active.
TRANSIENT — Data needs to be maintained for as long as the middleware is

running on at least one of the nodes.
PERSISTENT — Data needs to outlive system downtime. This implicates that it

must be kept somewhere on permanent storage in order to be able to make it
available again for subscribers after the middleware is restarted.
20
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

In OpenSplice DDS, the realisation of the non-volatile properties is the
responsibility of the durability service. Maintaining and providing of historical data
could in theory be done by a single durability service in the domain, but for
fault-tolerance and efficiency purposes one durability service is usually running on
every computing node. These durability services are on one hand responsible for
maintaining the set of historical data and on the other hand responsible for providing
historical data to late-joining subscribers. The configurations of the different
services drive the behaviour on where and when specific data will be maintained
and how it will be provided to late-joiners.

2.3.2 Concepts
The following subsections describe the concepts that drive the implementation of
the OpenSplice durability service.

2.3.2.1 Role and scope
Each OpenSplice node can be configured with a so-called role. A role is a logical
name and different nodes can be configured with the same role. The role itself does
not impose anything, but multiple OpenSplice services use the role as a mechanism
to distinguish behaviour between nodes with the equal and different roles.
The durability service allows configuring a so-called scope, which is an expression
that is matches against roles of other nodes. By using a scope, the durability service
can be instructed to apply different behaviour with respect to merging of historical
data sets (see section 2.3.2.3.4 on page 25 about merge-policies) to and from nodes
that have equal or different roles.
See //OpenSplice/Domain/Role (section 4.2.4 on page 97).
See //OpenSplice/DurabilityService/NameSpaces/Policy/Merge[@scope]

(section 4.3.4.2.3.2 on page 180).

2.3.2.2 Name-spaces
A sample published in DDS for a specific topic and instance is bound to one logical
partition. This means that in case a publisher is associated with multiple partitions, a
separate sample for each of the associated partitions is created. Even though they are
syntactically equal, they have different semantics (consider for instance the situation
where you have a sample in the ‘simulation’ partition versus one in the ‘real world’
partition).
Because applications might impose semantic relationships between instances
published in different partitions, a mechanism is required to express this relationship
and ensure consistency between partitions. For example, an application might
expect a specific instance in partition Y to be available when it reads a specific
instance from partition X.
21
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

This implies that the data in both partitions need to be maintained as one single set.
For persistent data, this dependency implies that the durability services in a domain
needs to make sure that this data set is re-published from one single persistent store
instead of combining data coming from multiple stores on disk. To express this
semantic relation between instances in different partitions to the durability service,
the user can configure so-called ‘name-spaces’ in the durability configuration file.
Each name-space is formed by a collection of partitions and all instances in such a
collection are always handled as an atomic data-set by the durability service. In
other words, the data is guaranteed to be stored and reinserted as a whole.
This atomicity also implies that name-spaces are a system wide concept meaning
that different durability services need to agree on its definition, i.e. which partitions
belong to one name-space. This doesn’t mean that each durability service needs to
know all name-spaces; as long as the name-spaces one does know don’t conflict
with one of the others in the domain. Name-spaces that are completely disjoint can
co-exist (their intersection is an empty set) and name-spaces conflict when they
intersect. For example: name-spaces {p1, q} and {p2, r} can co-exist, but
name-spaces {s, t} and {s, u} cannot.
Furthermore it is important to know that there is a set of configurable policies for
name-spaces, allowing durability services throughout the domain to take different
responsibilities for each name-space with respect to maintaining and providing of
data that belongs to the name-space. The durability name-spaces define the mapping
between logical partitions and the responsibilities that a specific durability service
needs to play. In the default configuration file there is only one name-space by
default (holding all partitions).
Next to the capability of associating a semantic relationship for data in one
name-space, the need to differentiate the responsibilities of a particular durability
service for a specific data-set is the second purpose of a name-space. Even though
there may not be any relation between instances in different partitions, the choice of
grouping specific partitions in different name-spaces can still be perfectly valid. The
need for availability of non-volatile data under specific conditions (fault-tolerance)
on one hand versus requirements on performance (memory usage, network
bandwidth, CPU usage, etc.) on the other hand may force the user to split up the
maintaining of the non-volatile data-set over multiple durability services in the
domain. Illustrative of this balance between fault-tolerance and performance is the
example of maintaining all data in all durability services, which is maximally
fault-tolerant, but also requires the most resources. The name-spaces concept allows
the user to divide the total set of non-volatile data over multiple name-spaces and
assign different responsibilities to different durability-services in the form of
so-called name-space policies.
See //OpenSplice/DurabilityService/NameSpaces/NameSpace

(section 4.3.4.1 on page 176).

22
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

2.3.2.3 Name-space policies
This section describes the policies that can be configured per name-space giving the
user full control over the fault-tolerance versus performance aspect on a per
name-space level.
See //OpenSplice/DurabilityService/NameSpaces/Policy

(section 4.3.4.2 on page 177).

2.3.2.3.1 Alignment policy
The durability services in a domain are on one hand responsible for maintaining the
set of historical data between services and on the other hand responsible for
providing historical data to late joining applications. The configurations of the
different services drive the behaviour on where and when specific data will be kept
and how it will be provided to late-joiners. The optimal configuration is driven by
fault-tolerance on one hand and resource usage (like CPU usage, network
bandwidth, disk space and memory usage) on the other hand. One mechanism to
control the behaviour of a specific durability service is the usage of alignment
policies that can be configured in the durability configuration file. This
configuration option allows a user to specify if and when data for a specific
name-space (see section about name-spaces) will be maintained by the durability
service and whether or not it is allowed to act as an aligner for other durability
services when they require (part of) the information.
The alignment responsibility of a durability service is therefore configurable by
means of two different configuration options being the aligner and alignee
responsibilities of the service:

Aligner policy
TRUE — The durability service will align others if needed.
FALSE — The durability service will not align others.

Alignee policy
INITIAL — Data will be retrieved immediately when the data is available and

continuously maintained from that point forward.
LAZY — Data will be retrieved on first arising interest on the local node and

continuously maintained from that point forward.
ON_REQUEST — Data will be retrieved only when requested by a subscriber, but

not maintained. Therefore each request will lead to a new alignment action.
See //OpenSplice/DurabilityService/NameSpaces/Policy[@aligner]

(section 4.3.4.2.6 on page 182)
23
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

See //OpenSplice/DurabilityService/NameSpaces/Policy[@alignee]
(section 4.3.4.2.5 on page 181).

2.3.2.3.2 Durability policy
The durability service is capable of maintaining (part of) the set of non-volatile data
in a domain. Normally this results in the outcome that data which is written as
volatile is not stored, data written as transient is stored in memory and data that is
written as persistent is stored in memory and on disk. However, there are use cases
where the durability service is required to ‘weaken’ the DurabilityQosPolicy
associated with the data, for instance by storing persistent data only in memory as if
it were transient. Reasons for this are performance impact (CPU load, disk I/O) or
simply because no permanent storage (in the form of some hard-disk) is available on
a node. Be aware that it is not possible to ‘strengthen’ the durability of the data
(Persistent > Transient > Volatile). The durability service has the following options
for maintaining a set of historical data:
PERSISTENT — Store persistent data on permanent storage, keep transient data in

memory and don’t maintain volatile data.
TRANSIENT — Keep both persistent and transient data in memory and don’t

maintain volatile data.
VOLATILE — Don’t maintain persistent, transient or volatile data.
This configuration option is called the ‘durability policy’.
See //OpenSplice/DurabilityService/NameSpaces/Policy[@durability]

(section 4.3.4.2.4 on page 180).

2.3.2.3.3 Delayed alignment policy
The durability service has a mechanism in place to make sure that when multiple
services with a persistent dataset exist, only one set (typically the one with the
newest state) will be injected in the system (see Section 2.3.4.4, Persistent data
injection, on page 32). This mechanism will, during the startup of the durability
service, negotiate with other services which one has the best set (see Section 2.3.4.3,
Master selection, on page 32). After negotiation the ‘best’ persistent set (which can
be empty) is restored and aligned to all durability services.
Once persistent data has been re-published in the domain by a durability service for
a specific name-space, other durability services in that domain cannot decide to
re-publish their own set for that name-space from disk any longer. Applications may
already have started their processing based on the already published set and
re-publishing another set of data may confuse the business logic inside applications.
Other durability services will therefore back-up their own set of data and align and
store the set that is already available in the domain. It is important to realise that an
empty set of data is also considered a set. This means that once a durability service
24
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

in the domain decides that there is no data (and has triggered applications that the
set is complete), other late-joining durability services will not re-publish their
persistent data that they potentially have available.
Some systems however do require re-publishing persistent data from disk if the
already re-published set is empty and no data has been written for the corresponding
name-space. The durability service can be instructed to still re-publish data from
disk in this case by means of an additional policy in the configuration called
‘delayed alignment’. This Boolean policy instructs a late-joining durability service
whether or not to re-publish persistent data for a name-space that has been marked
complete already in the domain, but for which no data exists and no DataWriters
have been created. Whatever setting is chosen, it should be consistent between all
durability services in a domain to ensure proper behaviour on system level.
See //OpenSplice/DurabilityService/NameSpaces/Policy[@delayedAlignment]

(section 4.3.4.2.2 on page 178).

2.3.2.3.4 Merge policy
A split-brain syndrome can be described as the situation in which two different
nodes (possibly) have a different perception on (part of) the set of historical data.
This split-brain occurs when two nodes or two sets of nodes (i.e. two systems) that
are participating in the same DDS domain have been running separately for some
time and suddenly get connected to each other. Equally this syndrome arises when
nodes re-connect after being disconnected for some time. Applications on these
nodes may have been publishing information for the same topic in the same
partition without this information reaching the other party. Therefore their
perception on the set of data will be different.
In many cases, exchanging information after this is no longer allowed, because there
is no guarantee that data between the connected systems doesn’t conflict. For
example, consider a fault-tolerant (distributed) global id service: this service will
provide globally-unique ids, this however will only be guaranteed if and only if
there is no disruption of communication between all services. In such a case a
disruption must be considered permanent and a reconnection must be avoided at any
cost.
Some new environments demand supporting the possibility to (re)connect two
separate systems though. One can think of ad-hoc networks where nodes
dynamically connect when they are near each other and disconnect again when
they’re out of range, but also systems where temporal loss of network connections is
normal. Another use case is the deployment of OpenSplice DDS in a hierarchical
network, where higher-level ‘branch’ nodes need to combine different historical
data sets from multiple ‘leaves’ into its own data set. In these new environments
there is the same strong need for the availability of data for ‘late-joining’
applications (non-volatile data) as in any other system.
25
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

For these kinds of environments the durability service has additional functionality to
support the alignment of historical data when two nodes get connected. Of course,
the basic use case of a newly started node joining an existing system is supported,
but in contradiction to that situation there is no universal truth in determining who
has the best (or the right) information when two already running nodes (re)connect.
When this situation occurs, the durability service provides the following
possibilities to handle the situation:
IGNORE — Ignore the situation and take no action at all. This means new

knowledge is not actively built up. Durability is passive and will only build up
knowledge that is ‘implicitly’ received from that point forward (simply by
receiving updates that are published by applications from that point forward and
delivered using the normal publish-subscribe mechanism).

DELETE — Dispose and delete all historical data. This means existing data is
disposed and deleted and other data is not actively aligned. Durability is passive
and will only maintain data that is ‘implicitly’ received from that point forward.

REPLACE — Dispose and replace all historical data by the data set that is available
on the connecting node.

MERGE — Merge the historical data with the data set that is available on the
connecting node.

From this point forward this set of options will be referred to as ‘merge policies’.
Like the networking service, the durability service also allows configuration of a
so-called scope to give the user full control over what merge policy should be
selected based on the role of the re-connecting node. The scope is a logical
expression and every time nodes get physically connected, they match the role of
the other party against the configured scope to see whether communication is
allowed and if so, whether a merge action is required.
As part of the merge policy configuration, one can also configure a scope. This
scope is matched against the role of remote durability services to determine what
merge policy to apply. Because of this scope, the merge behaviour for
(re-)connections can be configured on a per role basis. It might for instance be
necessary to merge data when re-connecting to a node with the same role, whereas
(re-)connecting to a node with a different role requires no action.
See //OpenSplice/DurabilityService/NameSpaces/Policy/Merge

(section 4.3.4.2.3 on page 179).

2.3.2.4 Dynamic name-spaces
As specified in the previous sections, a set of policies can be configured for a (set
of) given name-space(s). One may not know the complete set of name-spaces for the
entire domain though, especially when new nodes dynamically join the domain.
26
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

However, in case of maximum fault-tolerance, one may still have the need to define
behaviour for a durability service by means of a set of policies for name-spaces that
have not been configured on the current node.
Every name-space in the domain is identified by a logical name. To allow a
durability service to fulfil a specific role for any name-space, each policy needs be
configured with a name-space expression that is matched against the name of
name-spaces in the domain. If the policy matches a name-space, it will be applied
by the durability service, independent of whether or not the name-space itself is
configured on the node where this durability service runs. This concept is referred to
as ‘dynamic name-spaces’.
See //OpenSplice/DurabilityService/NameSpaces/Policy[@nameSpace]

 (section 4.3.4.2.1 on page 178).

2.3.2.5 Master/slave
Each durability service that is responsible for maintaining data in a namespace must
maintain the complete set for that namespace. It can achieve this by either
requesting data from a durability service that indicates it has a complete set or, if
none is available, request all data from all services for that namespace and combine
this into a single complete set. This is the only way to ensure all available data will
be obtained. In a system where all nodes are started at the same time, none of the
durability services will have the complete set, because applications on some nodes
may already have started to publish data. In the worst case every service that starts
then needs to ask every other service for its data. This concept is not very scalable
and also leads to a lot of unnecessary network traffic, because multiple nodes may
(partly) have the same data. Besides that, start-up times of such a system will
exponentially grow when adding new nodes. Therefore the so-called ‘master’
concept has been introduced.
Durability services will determine one ‘master’ for every name-space per
configured role amongst themselves. Once the master has been selected, this master
is the one that will obtain all historical data first (this also includes re-publishing its
persistent data from disk) and all others wait for that process to complete before
asking the master for the complete set of data. The advantage of this approach is that
only the master (potentially) needs to ask all other durability services for their data
and all others only need to ask just the master service for its complete set of data
after that.
Additionally, a durability service is capable of combining alignment requests
coming from multiple remote durability services and will align them all at the same
time using the internal multicast capabilities. The combination of the master concept
and the capability of aligning multiple durability services at the same time make the
alignment process very scalable and prevent the start-up times from growing when
the number of nodes in the system grows. The timing of the durability protocol can
27
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

be tweaked by means of configuration in order to increase chances of combining
alignment requests. This is particularly useful in environments where multiple
nodes or the entire system is usually started at the same time and a considerable
amount of non-volatile data needs to be aligned.

2.3.3 Mechanisms

2.3.3.1 Interaction with other durability services
To be able to obtain or provide historical data, the durability service needs to
communicate with other durability services in the domain. These other durability
services that participate in the same domain are called ‘fellows’. The durability
service uses regular DDS to communicate with its fellows. This means all
information exchange between different durability services is done with via
standard DataWriters and DataReaders (without relying on non-volatile data
properties of course).
Depending on the configured policies, DDS communication is used to determine
and monitor the topology, exchange information about available historical data and
alignment of actual data with fellow durability services.

2.3.3.2 Interaction with other OpenSplice services
In order to communicate with fellow durability services through regular DDS
DataWriters and DataReaders, the durability service relies on the availability of a
network service. This can be either the interoperable DDSI or the real-time
networking service. It can even be a combination of multiple networking services in
more complex environments. As networking services are pluggable like the
durability service itself, they are separate processes or threads that perform tasks
asynchronously next to the tasks that the durability service is performing. Some
configuration is required to instruct the durability service to synchronise its
activities with the configured networking service(s). The durability service aligns
data separately per partition-topic combination. Before it can start alignment for a
specific partition-topic combination it needs to be sure that the networking
service(s) have detected the partition-topic combination and ensure that data
published from that point forward is delivered from c.q. sent over the network. The
durability service needs to be configured to instruct it which networking service(s)
need to be attached to a partition-topic combination before starting alignment. This
principle is called ‘wait-for-attachment’.
Furthermore, the durability service is responsible to announce its liveliness
periodically with the splice-daemon. This allows the splice-daemon to take
corrective measures in case the durability service becomes unresponsive. The
durability service has a separate so-called watch-dog thread to perform this task.
The configuration file allows configuring the scheduling class and priority of this
watch-dog thread.
28
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

Finally, the durability service is also responsible to monitor the splice-daemon. In
case the splice-daemon itself fails to update its lease or initiates regular termination,
the durability service will terminate automatically as well.
See //OpenSplice/DurabilityService/Network

(section 4.3.2 on page 150).

2.3.3.3 Interaction with applications
The durability service is responsible to provide historical data to late-joining
subsc r i be r s . App l i ca t i ons ca n u se t he DCPS API ca l l
wait_for_historical_data on a DataReader to synchronise on the availability
of the complete set of historical data. Depending on whether the historical data is
already available locally, data can be delivered immediately after the DataReader
has been created or must be aligned from another durability service in the domain
first. Once all historical data is delivered to the newly-created DataReader, the
d u r a b i l i t y s e r v i c e w i l l t r i g g e r t h e D a t a R e a d e r u n b l o c k i n g t h e
wait_for_historical_data performed by the application. If the application
does not need to block until the complete set of historical data is available before it
starts processing, there is no need to call wait_for_historical_data. It should
be noted that in that case historical data still is delivered by the durability service
when it becomes available.

2.3.3.4 Parallel alignment
When a durability service is started and joins an already running domain, it usually
obtains historical data from one or more already running durability services. In case
multiple durability services are started around the same time, each one of them
needs to obtain a set of historical data from the already running domain. The set of
data that needs to be obtained by the various durability services is often the same or
at least has a large overlap. Instead of aligning each newly joining durability service
separately, aligning all of them at the same time is very beneficial, especially if the
set of historical data is quite big. By using the built-in multi-cast and broadcast
capabilities of DDS, a durability service is able to align as many other durability
services as desired in one go. This ability reduces the CPU, memory and bandwidth
usage of the durability service and makes the alignment scale also in situations
where many durability services are started around the same time and a large set of
historical data exists. The concept of aligning multiple durability service at the same
time is referred to as ‘parallel alignment’.
To allow this mechanism to work, durability services in a domain determine a
master durability service for each name-space. Every durability service elects the
same master for a given name-space based on a set of rules that will be explained
later on in this document. When a durability service needs to be aligned, it will
always send its request for alignment to its selected master. This results in only one
29
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

durability service being asked for alignment by any other durability service in the
domain for a specific name-space, but also allows the master to combine similar
requests for historical data. To be able to combine alignment requests from different
sources, a master will wait a period of time after receiving a request and before
answering a request. This period of time is called the ‘request-combine period’.
The actual amount of time that defines the ‘request-combine period’ for the
durability service is configurable. Increasing the amount of time will increase the
likelihood of parallel alignment, but will also increase the amount of time before it
will start aligning the remote durability service and in case only one request comes
in within the configured period, this is non-optimal behaviour. The optimal
configuration for the request-combine period therefore depends heavily on the
anticipated behaviour of the system and optimal behaviour may be different in every
use case.
In some systems, all nodes are started simultaneously, but from that point forward
new nodes start or stop sporadically. In such systems, different configuration with
respect to the request-combine period is desired when comparing the start-up and
operational phases. That is why the configuration of this period is split into different
settings: one during the start-up phase and one during the operational phase.
See //OpenSplice/DurabilityService/Network/Alignment/RequestCombinePeriod

(section 4.3.2.5.6 on page 161).

2.3.3.5 Tracing
Configuring durability services throughout a domain and finding out what exactly
happens during the lifecycle of the service can prove difficult. Especially
OpenSplice developers sometimes have a need to get more detailed durability
specific state information than is available in the regular OpenSplice info and error
logs to be able to analyse what is happening. To allow retrieval of more internal
information about the service for (off-line) analysis to improve performance or
analyse potential issues, the service can be configured to trace its activities to a
specific output file on disk.
By default, this tracing is turned off for performance reasons, but it can be enabled
by configuring it in the XML configuration file.
The durability service supports various tracing verbosity levels. In general can be
stated that the more verbose level is configured (FINEST being the most verbose),
the more detailed the information in the tracing file will be.
See //OpenSplice/DurabilityService/Tracing

(section 4.3.7 on page 187).
30
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

2.3.4 Lifecycle
During its lifecycle, the durability service performs all kinds of activities to be able
to live up to the requirements imposed by the DDS specification with respect to
non-volatile properties of published data. This section describes the various
activities that a durability service performs to be able to maintain non-volatile data
and provide it to late-joiners during its lifecycle.

2.3.4.1 Determine connectivity
Each durability service constantly needs to have knowledge on all other durability
services that participate in the domain to determine the logical topology and changes
in that topology (i.e. detect connecting, disconnecting and re-connecting nodes).
This allows the durability service for instance to determine where non-volatile data
potentially is available and whether a remote service will still respond to requests
that have been sent to it reliably.
To determine connectivity, each durability service sends out a heartbeat periodically
(every configurable amount of time) and checks whether incoming heartbeats have
expired. When a heartbeat from a fellow expires, the durability service considers
that fellow disconnected and expects no more answers from it. This means a new
aligner will be selected for any outstanding alignment requests for the disconnected
fellow. When a heartbeat from a newly (re)joining fellow is received, the durability
service will assess whether that fellow is compatible and if so, start exchanging
information.
See //OpenSplice/DurabilityService/Network/Heartbeat

(section 4.3.2.3 on page 151).

2.3.4.2 Determine compatibility
When a durability service detects a remote durability service in the domain it is
participating in, it will determine whether that service has a compatible
configuration before it will decide to start communicating with it. The reason not to
start communicating with the newly discovered durability service would be a
mismatch in configured name-spaces. As explained in a previous section about the
name-space concept, having different name-spaces is not an issue as long as they do
not overlap. In case an overlap is detected, no communication will take place
between the two ‘incompatible’ durability services. Such an incompatibility in your
system is considered a mis-configuration and is reported as such in the OpenSplice
error log.
Once the durability service determines name-spaces are compatible with the ones of
all discovered other durability services, it will continue with selection of a master
for every name-space, which is the next phase in its lifecycle.
31
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

2.3.4.3 Master selection
To ensure a single source for re-publishing of persistent data and to allow parallel
alignment, each durability service will select a master for every name-space. The
rules for determining a master is as follows:
1. If some other durability service in the domain already selected a master, pick the

same one.
2. If no master has been selected, pick the one with the newest initial set of

persistent data.
3. If multiple durability services exist with the newest set of initial persistent data,

pick the one with the highest id (this id is a domain-wide unique number that is
generated at start-up of each OpenSplice federation)

In case an existing master is no longer available, due to a disconnection, crash or
regular termination, a new master is selected based on the same rules.
See //OpenSplice/DurabilityService/Network/InitialDiscoveryPeriod

(section 4.3.2.4 on page 155).

2.3.4.4 Persistent data injection
As persistent data needs to outlive system downtime, this data needs to be
re-published in DDS once a domain is started. In case only one node is started, the
durability service on that node can simply re-publish the persistent data from its
disk. However, if multiple nodes are started at the same time, things become more
difficult. Each one of them may have a different set available on permanent storage
due to the fact that durability services have been stopped on a different moment in
time. Therefore only one of them can be allowed re-publish its data to prevent
inconsistencies and duplication of data. The steps below describe how a durability
service currently determines whether or not to inject its data during start-up:
1. Determine validity of own persistent data — During this step the durability

service determines whether its persistent store has initially been completely
filled with all persistent data in the domain in the last run. In case the service
was shut down in the last run during initial alignment of the persistent data, the
set of data will be incomplete and the service will restore its back-up of a full set
of (older) data if that is available from a run before that. This is done because it
is considered better to re-publish an older but complete set of data instead of a
part of a newer set.

2. Determine quality of own persistent data — In case persistence has been
configured, the durability service will inspect the quality of its persistent data on
start-up. The quality is determined on a per-name-space level by looking at the
time-stamps of the persistent data on disk. The latest time-stamp of the data on
disk is used as the quality of the name-space. This information is useful when
32
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.3 The Durability Service

multiple nodes are started at the same time. Since there can only be one source
per name-space that is allowed to actually inject the data from disk into DDS,
this mechanism allows the durability services to select the source that has the
latest data, because this is generally considered the best data. In case this is not
true then an intervention is required. The data on the node must be replaced by
the correct data either by a supervisory (human or system management
application) replacing the data files or starting the nodes in the desired sequence
so that data is replaced by alignment.

3. Determine topology — During this step, the durability service determines
whether there are other durability services in the domain and what their state is.
If this service is the only one, it will select itself as the ‘best’ source for the
persistent data.

4. Determine master — During this step the durability service will determine who
will inject persistent data or who has injected persistent data already. The one
that will or already has injected persistent data is called the ‘master’. This
process is done on a per name-space level (see previous section).
a) Find existing master – In case the durability service joins an already

running domain, the master has already been determined and this one has
already injected the persistent data from its disk or is doing it right now. In
this case, the durability service will set its current set of persistent data aside
and will align data from the already existing master node. If there is no
master yet, persistent data has not been injected yet.

b) Determine new master – In case the master has not been determined yet, the
durability service determines the master for itself based on who has the best
quality of persistent data. In case there is more than one service with the
‘best’ quality, the one with the highest system id (unique number) is
selected. Furthermore, a durability service that is marked as not being an
aligner for a name-space cannot become master for that name-space.

5. Inject persistent data — During this final step the durability service injects its
persistent data from disk into the running domain. This is only done when the
service has determined that it is the master. In any other situation the durability
service backs up its current persistent store and fills a new store with the data it
aligns from the master durability service in the domain or waits with alignment
until a master becomes available in the domain.

2.3.4.5 Discover historical data
During this phase, the durability service finds out what historical data is available in
the domain that matches any of the locally configured name-spaces. All necessary
topic definitions and partition information are retrieved during this phase. This step
is performed before the historical data is actually aligned from others. The process
33
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.4 The Networking Service

of discovering historical data continues during the entire lifecycle of the service and
is based on the reporting of locally created partition-topic combinations by each
durability service to all others in the domain.

2.3.4.6 Align historical data
Once all topic and partition information for all configured name-spaces are known,
the initial alignment of historical data takes place. Depending on the configuration
of the service, data is obtained immediately after discovering it or only once local
interest in the data arises. The process of aligning historical data continues during
the entire lifecycle of the durability service.

2.3.4.7 Provide historical data
Once (a part of) the historical data is available in the durability service, it is able to
provide historical data to local DataReaders as well as other durability service.
Providing of historical data to local DataReaders is performed automatically as soon
as the data is available. This may be immediately after the DataReader is created (in
case historical data is already available in the local durability service at that time) or
immediately after it has been aligned from a remote durability service.
Providing of historical data to other durability services is done only on request by
these services. In case the durability service has been configured to act as an aligner
for others, it will respond to requests for historical data that are received. The set of
locally available data that matches the request will be sent to the durability service
that requested it.

2.3.4.8 Merge historical data
When a durability service discovers a remote durability service and detects that
neither that service nor the service itself is in start-up phase, it concludes that they
have been running separately for a while (or the entire time) and both may have a
different (but potentially complete) set of historical data. When this situation occurs,
the configured merge-policies will determine what actions are performed to recover
from this situation. The process of merging historical data will be performed every
time two separately running systems get (re-)connected.

2.4 The Networking Service
When communication endpoints are located on different computing nodes or on
different single processes, the data produced using the local Domain Service must
be communicated to the remote Domain Services and the other way around. The
Networking Service provides a bridge between the local Domain Service and a
network interface. Multiple Networking Services can exist next to each other; each
34
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

serving one or more physical network interfaces. The Networking Service is
responsible for forwarding data to the network and for receiving data from the
network.
There are two implementations of the networking service, the Native Networking
Service and the DDSI2 Networking Service.

2.4.1 The Native Networking Service
The ‘native’ Networking Service is the optimal implementation of DDS networking
for OpenSplice DDS and is both highly scalable and configurable.
The Native Networking Service can be configured to distinguish multiple
communication channels with different QoS policies. These policies will be used to
schedule individual messages to specific channels, which may be configured to
provide optimal performance for a specific application domain.
The exact fulfilment of these responsibilities is determined by the configuration of
the Networking Service. There is an overview of the available configuration
parameters and their purpose in Section 4.4.1, The Network Service, on page 189.

2.4.2 The Secure Native Networking Service
There is a secure version of the native networking service available.
Please refer to the OpenSplice Security Configuration Guide for details.

2.5 The DDSI2 and DDSI2E Networking Services
The purpose and scope of the “Data-Distribution Service Interoperability Wire
Protocol” is to ensure that applications based on different vendors’ implementations
of DDS can interoperate. The protocol was standardized by the OMG in 2008, and
was designed to meet the specific requirements of data-distribution systems.
Features of the DDSI protocol include:
• Performance and Quality-of-Service properties to enable best-effort and

reliable publish-subscribe communications for real-time applications over
standard IP networks.

• Fault tolerance to allow the creation of networks without single points of failure.
• Plug-and-play Connectivity so that new applications and services are

automatically discovered and applications can join and leave the network at any
time without the need for reconfiguration.

• Configurability to allow balancing the requirements for reliability and timeliness
for each data delivery.

• Scalability to enable systems to potentially scale to very large networks.
35
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

DDSI-Extended (DDSI2E) is an extended version of the DDSI2 networking service,
giving extra features for:
• Network partitions: Network partitions provide the ability to use alternative

multicast addresses for combinations of DCPS topics and partitions to separate
out traffic flows, for example for routing or load reduction.

• Security: Encryption can be configured per network partition. This enables
configuring encrypted transmission for subsets of the data.

• Bandwidth limiting and traffic scheduling: Any number of ‘network channels’
can be defined, each with an associated transport priority. Application data is
routed via the network channel with the best matching priority. For each network
channel, outgoing bandwidth limits can be set and the IP ‘differentiated services’
options can be controlled.

The remainder of this section gives background on these two services and describes
how the various mechanisms and their configuration parameters interact. A
complete list of configuration parameters is in Section 4.7, The DDSI2 and DDSI2
Enhanced Networking Service, on page 293 .

2.5.1 DDSI Concepts
The DDSI 2.1 standard is very intimately related to the DDS 1.2 standard, with a
clear correspondence between the entities in DDSI and those in DCPS. However,
this correspondence is not one-to-one.
In this section we give a high-level description of the concepts of the DDSI
specification, with hardly any reference to the specifics of the OpenSplice
implementation, DDSI2, which are addressed in the subsequent sections. This
division was chosen to aid the reader interested in interoperability in understanding
where the specification ends and the OpenSplice implementation begins.

2.5.1.1 Mapping of DCPS domains to DDSI domains
In DCPS, a domain is uniquely identified by a non-negative integer, the domain id.
DDSI maps this domain id to UDP/IP port numbers to be used for communicating
with the peer nodes—these port numbers are particularly important for the
discovery protocol—and this mapping of domain ids to UDP/IP port numbers
ensures accidental cross-domain communication is impossible with the default
mapping.
DDSI does not communicate the DCPS port number in the discovery protocol; it
assumes each domain ids maps to unique port numbers. While it is unusual to
change the mapping, the specification requires this to be possible, and this means
that two different DCPS domain ids can be mapped to a single DDSI domain.
36
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.1.2 Mapping of DCPS entities to DDSI entities
Each DCPS domain participant in a domain is mirrored in DDSI as a DDSI
participant. These DDSI participants drive the discovery of participants, readers and
writers in DDSI via the discovery protocols. By default each DDSI participant has a
unique address on the network in the form of its own UDP/IP socket with a unique
port number.
Any data reader or data writer created by a DCPS domain participant is mirrored in
DDSI as a DDSI reader or writer. In this translation, some of the structure of the
DCPS domain is lost, because DDSI has no knowledge of DCPS Subscribers and
Publishers. Instead, each DDSI reader is the combination of the corresponding
DCPS data reader and the DCPS subscriber it belongs to; and similarly, each DDSI
writer is a combination of the corresponding DCPS data writer and DCPS publisher.
This corresponds to the way the DCPS built-in topics describe the DCPS data
readers and data writers, as there are no built-in topics for describing the DCPS
subscribers and publishers either.
In addition to the application-created readers and writers (referred to as
‘endpoints’), DDSI participants have a number of DDSI built-in endpoints used for
discovery and liveliness checking/asserting. The most important ones are those
absolutely required for discovery: readers and writers for the discovery data
concerning DDSI participants, DDSI readers and DDSI writers. Some other ones
exist as well, and a DDSI implementation can leave out some of these if it has no
use for them. For example, if a participant has no writers, it doesn’t strictly need the
DDSI built-in endpoints for describing writers, nor the DDSI built-in endpoint for
learning of readers of other participants.

2.5.1.3 Reliable communication
Best-effort communication is simply a wrapper around UDP/IP: the packet(s)
containing a sample are sent to the addresses at which the readers reside. No state is
maintained on the writer. If a packet is lost, the reader will simply drop the sample
and continue with the next one.
When reliable communication is used, the writer does maintain a copy of the
sample, in case a reader detects it has lost packets and requests a retransmission.
These copies are stored in the writer history cache (or WHC) of the DDSI writer.
The DDSI writer is required to periodically send Heartbeats to its readers to ensure
that all readers will learn of the presence of new samples in the WHC even when
packets get lost.
If a reader receives a Heartbeat and detects it did not receive all samples, it requests
a retransmission by sending an AckNack message to the writer, in which it
simultaneously informs the writer up to what sample it has received everything, and
37
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

which ones it has not yet received. Whenever the writer indicates it requires a
response to a Heartbeat the readers will send an AckNack message even when no
samples are missing. In this case, it becomes a pure acknowledgement.
The combination of these behaviours in principle allows the writer to remove old
samples from its WHC when it fills up too far, and allows readers to always receive
all data. A complication exists in the case of unresponsive readers, readers that do
not respond to a Heartbeat at all, or that for some reason fail to receive some
samples despite resending it. The specification leaves the way these get treated
unspecified.
Note that while this Heartbeat/AckNack mechanism is very straightforward, the
specification actually allows suppressing heartbeats, merging of AckNacks and
retransmissions, &c. The use of these techniques is required to allow for a
performant DDSI implementation, whilst avoiding the need for sending redundant
messages.

2.5.1.4 DDSI-specific transient-local behaviour
The above describes the essentials of the mechanism used for samples of the
‘volatile’ durability kind, but the DCPS specification also provides ‘transient-local’,
‘transient and ‘persistent’ data. Of these, the DDSI specification currently only
covers transient-local, and this is the only form of durable data available when
interoperating across vendors.
In DDSI, transient-local data is implemented using the WHC that is normally used
for reliable communication. For transient-local data, samples are retained even
when all readers have acknowledged them. With the default history setting of
KEEP_LAST with history_depth = 1, this means that late-joining readers can still
obtain the latest sample for each existing instance.
Naturally, once the DCPS writer is deleted (or disappears for whatever reason), the
DDSI writer disappears as well, and with it, its history. For this reason, transient
data is generally much to be preferred over transient-local data. In OpenSplice the
durability service implements all three durability kinds without requiring any
special support from the networking services, ensuring the full set of durability
features is always available between OpenSplice nodes.

2.5.1.5 Discovery of participants & endpoints
DDSI participants discover each other by means of the ‘Simple Participant
Discovery Protocol’, or ‘SPDP’ for short. This protocol is based on periodically
sending a message containing the specifics of the participant to a set of known
addresses. By default, this is a standardised multicast address (239.255.0.1; the port
number is derived from the domain id) that all DDSI implementations listen to.
38
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

Particularly important in the SPDP message are the unicast and multicast addresses
at which the participant can be reached. Typically, each participant has a unique
unicast address, which in practice means all participants on a node all have a
different UDP/IP port number in their unicast address. In a multicast-capable
network, it doesn’t matter what the actual address (including port number) is,
because all participants will learn them through these SPDP messages.
The protocol does allow for unicast-based discovery, which requires listing the
addresses of machines where participants may be located, and ensuring each
participant uses one of a small set of port numbers. Because of this, some of the port
numbers are derived not only from the domain id, but also from a ‘participant
index’, which is a small non-negative integer, unique to a participant within a node.
(The DDSI2 service adds an indirection and uses at most one participant index
regardless of how many DCPS participants it handles.)
Once two participants have discovered each other, and both have matched the DDSI
built-in endpoints their peer is advertising in the SPDP message, the ‘Simple
Endpoint Discovery Protocol’ or ‘SEDP’ takes over, exchanging information on the
DCPS data readers and data writers in the two participants.
The SEDP data is handled as reliable, transient-local data. Therefore, the SEDP
writers send Heartbeats, the SEDP readers detect they have not yet received all
samples and send AckNacks requesting retransmissions, the writer responds to these
and eventually receives a pure acknowledgement informing it that the reader has
now received the complete set.
Note that the discovery process necessarily creates a burst of traffic each time a
participant is added to the system: all existing participants respond to the SPDP
message, following which all start exchanging SEDP data.

2.5.2 OpenSplice DDSI2 specifics

2.5.2.1 Translating between OpenSplice and DDSI
Given that DDSI is the DDS interoperability specification, that the mapping
between DCPS entities and DDSI entities is straightforward, and that OpenSplice is
a full implementation of the DDS specification, one might expect that relationship
between OpenSplice and its DDSI implementation, DDSI2, is trivial. Unfortunately,
this is not the case, and it does show in a number of areas. A high-level overview
such as this paragraph is not the place for the details of these cases, but they will be
described in due course.
The root cause of these complexities is a difference in design philosophy between
OpenSplice and the more recent DDSI.
39
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

DDSI is very strictly a peer-to-peer protocol at the level of individual endpoints,
requiring lots of discovery traffic, and (at least when implemented naively) very bad
scalability. It is exactly these three problems that OpenSplice was designed to avoid,
and it does so successfully with its native RTNetworking service.
Because of this design for scalability and the consequent use of service processes
rather than forcing everything into self-contained application processes, there are
various ways in which DDSI2 has to translate between the two worlds. For example,
queuing and buffering and, consequently, blocking behaviour is subtly different;
DDSI2 needs to also perform local discovery of DCPS endpoints to gather enough
information for faithfully representing the system in terms of DDSI, it needs to
translate between completely different namespaces (native OpenSplice identifiers
are very different from the GUIDs used by DDSI), and it needs to work around
receiving asynchronous notifications for events one would expect to be synchronous
in DDSI.
This guide aims to not only provide guidance in configuring DDSI2, but also help in
understanding the trade-offs involved.

2.5.2.2 Federated versus Standalone deployment
As has been described elsewhere in detail, OpenSplice has multiple deployment
models selectable in the configuration file (some of these require a license). For
DDSI2, there is no difference between the various models: it simply serves
whatever DCPS participants are in the same ‘instance’, whether that instance be a
federation of processes on a single node, all attached to a shared memory segment
managed by a set of OpenSplice service processes on that node, or a standalone one
in which a single process incorporates the OpenSplice services as libraries.
This document ignores the various deployment modes, using the terminology
associated with the federated deployment mode because that mode is the driving
force behind several of the user-visible design decisions in DDSI2. In consequence,
for a standalone deployment, the term ‘node’ as used in this guide refers to a single
process.

2.5.2.3 Discovery behaviour

2.5.2.3.1 Local discovery and built-in topics
Inside one node, DDSI2 monitors the creation and deletion of local DCPS domain
participants, data readers and data writers. It relies on the DCPS built-in topics to
keep track of these events, and hence the use of DDSI requires that these topics are
enabled in the configuration, which is the default (see the description of
//OpenSplice/Domain/BuiltinTopics[@enabled] in Section 4.2.12.1 on
page 115).
40
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

If the built-in topics must be disabled to reduce network load, then the alternative is
to instruct DDSI2 to completely ignore them using the DCPS topic/partition to
network partition mapping available in the enhanced version, DDSI2E.
A separate issue is that of the DCPS built-in topics when interoperating with other
implementations. In OpenSplice the built-in topics are first-class topics, i.e., the
only difference between application topics and the built-in topics in OpenSplice is
that the built-in topics are pre-defined and that they are published and used by the
OpenSplice services. This in turn allows the RTNetworking service to avoid
discovery of individual domain participants and endpoints, enabling its excellent
scalability.
Conversely, DDSI defines a different and slightly extended representation for the
information in the built-in topics as part of the discovery protocol specification, with
a clear intent to locally reconstruct the samples of the built-in topics. Unfortunately,
this also means that the DCPS built-in topics become a special case.
Taken together, DDSI2 is in the unfortunate situation of having to straddle two very
different approaches. While local reconstruction of the DCPS built-in topics by
DDSI2 is clearly possible, it would negatively impact the handling of transient data.
Since handling transient data is one of the true strengths of OpenSplice, DDSI2
currently does not perform this reconstruction, with the unfortunate implication that
loss of liveliness will not be handled fully when interoperating with another DDSI
implementation.

2.5.2.3.2 Proxy participants and endpoints
DDSI2 is what the DDSI specification calls a ‘stateful’ implementation. Writers
only send data to discovered readers and readers only accept data from discovered
writers. (There is one exception: the writer may choose to multicast the data, and
anyone listening will be able to receive it, if a reader has already discovered the
writer but not vice-versa, it may accept the data even though the connection is not
fully established yet.) Consequently, for each remote participant and reader or
writer, DDSI2 internally creates a proxy participant, proxy reader or proxy writer.
In the discovery process, writers are matched with proxy readers, and readers are
matched with proxy writers, based on the topic and type names and the QoS
settings.
Proxies have the same natural hierarchy that ‘normal’ DDSI entities have: each
proxy endpoint is owned by some proxy participant, and once the proxy participant
is deleted, all its proxy endpoints are deleted as well. Participants assert their
liveliness periodically, and when nothing has been heard from a participant for the
lease duration published by that participant in its SPDP message, the lease becomes
expired triggering a clean-up.
41
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

Under normal circumstances, deleting endpoints simply triggers disposes and
unregisters in SEDP protocol, and, similarly, deleting a participant also creates
special messages that allow the peers to immediately reclaim resources instead of
waiting for the lease to expire.

2.5.2.3.3 Sharing of discovery information
DDSI2 is designed to service any number of participants, as one would expect for a
service capable of being deployed in a federated system. This obviously means it is
aware of all participants, readers and writers on a node. It also means that the
discovery protocol as sketched earlier is rather wasteful: there is no need for each
individual participant serviced by DDSI2 to run the full discovery protocol for itself.
Instead of implementing the protocol as suggested by the standard, DDSI2 shares all
discovery activities amongst the participants, allowing one to add participants on a
node with only a minimal impact on the system. It is even possible to have only a
single DDSI participant on each node, which then becomes the virtual owner of all
the endpoints serviced by that instance of DDSI2. (See Section 2.5.3.2, Combining
multiple participants, on page 50, and Section 4.7.1.1.7.9 on page 320 for the
Internal/SquashParticipants setting.) In this latter mode, there is no discovery
penalty at all for having many participants, but evidently, any participant-based
liveliness monitoring will be affected.
Because other implementations of the DDSI specification may be written on the
assumption that all participants perform their own discovery, it is possible to
simulate that with DDSI2. It will not actually perform the discovery for each
participant independently, but it will generate the network traffic as if it does (see
the descriptions of Internal elements in Section 4.7.1.1.7.11, Element
Buil t inEndpointSet , on page 321, and Section 4.7 .1.1 .7.13, Element
ConservativeBuiltinReaderStartup, on page 322; however, please note that at the
time of writing, we are not aware of any DDSI implementation requiring the use of
these settings.)
By sharing the discovery information across all participants in a single node, each
new participant or endpoint is immediately aware of the existing peers and will
immediately try to communicate with these peers. This may generate some
redundant network traffic if these peers take a significant amount of time for
discovering this new participant or endpoint.
Another advantage (particularly in a federated deployment) is that the amount of
memory required for discovery and the state of the remote entities is independent of
the number of participants that exist locally.
42
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.2.3.4 Lingering writers
When an application deletes a reliable DCPS data writer, there is no guarantee that
all its readers have already acknowledged the correct receipt of all samples. In such
a case, DDSI2 lets the writer (and the owning participant if necessary) linger in the
system for some time, controlled by the Internal/WriterLingerDuration option
(Section 4.7.1.1.7.20 on page 326). The writer is deleted when all samples have
been acknowledged by all readers or the linger duration has elapsed, whichever
comes first.
The writer linger duration setting is currently not applied when DDSI2 is requested
to terminate. In a federated deployment it is unlikely to visibly affect system
behaviour, but in a standalone deployment data written just before terminating the
application may be lost.

2.5.2.3.5 Start-up mode
A similar issue exists when starting DDSI2: DDSI discovery takes time, and when
data is written immediately after DDSI2 has started, it is likely that the discovery
process hasn’t completed yet and some remote readers have not yet been
discovered. This would cause the writers to throw away samples for lack of interest,
even though matching readers already existed at the time of starting. For best-effort
writers, this is perhaps surprising but still acceptable; for reliable writers, however,
it would be very counter-intuitive.
Hence the existence of the so-called ‘start-up mode’, during which all volatile
reliable writers are treated as-if they are transient-local writers. Transient-local data
is meant to ensure samples are available to late-joining readers, the start-up mode
uses this same mechanism to ensure late-discovered readers will also receive the
data. This treatment of volatile data as-if it were transient-local happens entirely
within DDSI2 and is invisible to the outside world, other than the availability of
some samples that would not otherwise be available.
Once DDSI2 has completed its initial discovery, it has built up its view of the
network and can locally match new writers against already existing readers, and
consequently keeps any new samples published in a writer history cache because
these existing readers have not acknowledged them yet. Hence why this mode is tied
to the start-up of the DDSI2 service, rather than to that of an individual writer.
Unfortunately it is impossible to detect with certainty when the initial discovery
process has been completed and therefore the time DDSI2 remains in this start-up
mode is controlled by an option: General/StartupModeDuration.
43
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

While in general, this start-up mode is beneficial, it is not always so. There are two
downsides: the first is that during the start-up period, the writer history caches can
grow significantly larger than one would normally expect; the second is that it does
mean large amounts of historical data may be transferred to readers discovered
relatively late in the process.
In a federated deployment on a local-area network, the likelihood of this behaviour
causing problems is negligible, as in such a configuration the DDSI2 service
typically starts seconds before the applications and besides the discovery times are
short. The other extreme is a single-process deployment in a wide-area network,
where the application starts immediately and discovery times may be long.

2.5.2.4 Writer history QoS and throttling
The DDSI specification heavily relies on the notion of a writer history cache (WHC)
within which a sequence number uniquely identifies each sample. The original
OpenSplice design has a different division of responsibilities between various
components than what is assumed by the DDSI specification and this includes the
WHC. Despite the different division, the resulting behaviour is the same.
DDSI2 bridges this divide by constructing its own WHC when needed. This WHC
integrates two different indices on the samples published by a writer: one is on
sequence number, which is used for retransmitting lost samples, and one is on key
value and is used for retaining the current state of each instance in the WHC.
The index on key value allows dropping samples from the index on sequence
number when the state of an instance is overwritten by a new sample. For
transient-local, it conversely (also) allows retaining the current state of each
instance even when all readers have acknowledged a sample.
The index on sequence number is required for retransmitting old data, and is
therefore needed for all reliable writers. The index on key values is always needed
for transient-local data, and can optionally be used for other writers using a history
setting of KEEP_LAST with depth 1. (The Internal/AggressiveKeepLast1Whc
setting controls this behaviour—see Section 4.7.1.1.7.12 on page 322.) The
advantage of an index on key value in such a case is that superseded samples can be
dropped aggressively, instead of having to deliver them to all readers; the
disadvantage is that it is somewhat more resource-intensive.
Writer throttling is based on the WHC size using a simple bang-bang controller.
Once the WHC contains Internal/Watermarks/WhcHigh unacknowledged
samples (see Section 4.7.1.1.7.34.2 on page 333), it stalls the writer until the number
of unacknowledged samples drops below Internal/Watermarks/WhcLow (see
Section 4.7.1.1.7.34.1 on page 333). While ideally only the one writer would be
44
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

stalled, the interface between the OpenSplice kernel and DDSI2 is such that other
outgoing traffic may be stalled as well. See Section 2.5.2.5, Unresponsive readers &
head-of-stream blocking, on page 45.

2.5.2.5 Unresponsive readers & head-of-stream blocking
For reliable communications, DDSI2 must retain sent samples in the WHC until
they have been acknowledged. Especially in case of a KEEP_ALL history kind, but
also in the default case when the WHC is not aggressively dropping old samples of
instances (Internal/AggressiveKeepLast1Whc, see Section 4.7.1.1.7.12 on page
322), a reader that fails to acknowledge the samples timely will cause the WHC to
run into resource limits.
The correct treatment suggested by the DDS specification is to simply take the
writer history QoS setting, apply this to the DDSI2 WHC, and block the writer up to
its ‘max_blocking_time’ QoS setting. However, the scalable architecture of
OpenSplice renders this simple approach infeasible because of the division of labour
between the application processes and the various services. Of course, even if it
were a possible approach, the problem would still not be gone entirely, as one
unresponsive (for whatever reason) reader would still be able to prevent the writer
from making progress and thus prevent the system from making progress if the
writer is a critical one.
Because of this, once DDSI2 hits a resource limit on a WHC, it blocks the sequence
of outgoing samples for up to Internal/ResponsivenessTimeout (see Section
4.7.1.1.7.2 on page 317). If this timeout is set larger than roughly the domain expiry
time (//OpenSplice/Domain/Lease/ExpiryTime, see Section 4.2.5.1 on page 98), it
may cause entire nodes to lose liveliness. The enhanced version, DDSI2E, has the
ability to use multiple queues and can avoid this problem; please refer to Section
2.5.5.2, Channel configuration, on page 59.
Any readers that fail to acknowledge samples in time will be marked ‘unresponsive’
and be treated as best-effort readers until they start acknowledging data again.
One particular case where this can easily occur is if a reader becomes unreachable,
for example because a network cable is unplugged. While this will eventually cause
a lease to expire, allowing the proxy reader to be removed and the writer to no
longer retain data for it, in the meantime the writer can easily run into a WHC limit.
This will then cause the writer to mark the reader as unresponsive, and the system
will continue to operate. The presence of unacknowledged data in a WHC as well as
the existence of unresponsive readers will force the publication of Heartbeats, and
so unplugging a network cable will typically induce a stream of Heartbeats from
some writers.
45
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

Another case where this can occur is with a very fast writer, and a reader on a slow
host, and with large buffers on both sides: then the time needed by the receiving host
to process the backlog can become longer than this responsiveness timeout, causing
the writer to mark the reader as unresponsive, in turn causing the backlog to be
dropped. This allows the reader catch up, at which point it once again acknowledges
data promptly and will be considered responsive again, causing a new backlog to
build up, &c.

2.5.2.6 Handling of multiple partitions and wildcards

2.5.2.6.1 Publishing in multiple partitions
A variety of design choices allow OpenSplice in combination with its
RTNetworking service to be fully dynamically discovered, yet without requiring an
expensive discovery protocol. A side effect of these choices is that a DCPS writer
publishing a single sample in multiple partitions simultaneously will be translated
by the current version of DDSI2 as a writer publishing multiple identical samples in
all these partitions, but with unique sequence numbers.
When DDSI2 is used to communicate between OpenSplice nodes, this is not an
application-visible issue, but it is visible when interoperating with other
implementations. Fortunately, publishing in multiple partitions is rarely a wise
choice in a system design.
Note that this only concerns publishing in multiple partitions, subscribing in
multiple partitions works exactly as expected, and is also a far more common
system design choice.

2.5.2.6.2 Wildcard partitions
DDSI2 fully implements publishing and subscribing using partition wildcards, but
depending on many (deployment time and application design) details, the use of
partition wildcards for publishing data can easily lead to the replication of data as
mentioned in the preceding subsection (2.5.2.6.1).
Secondly, because DDSI2 implements transient-local data internally in a different
way from the way the OpenSplice durability service does, it is strongly
recommended that the combination of transient-local data and publishing using
partition wildcards be avoided completely..

2.5.3 Network and discovery configuration

2.5.3.1 Networking interfaces
DDSI2 uses a single network interface, the ‘preferred’ interface, for transmitting its
multicast packets and advertises only the address corresponding to this interface in
the DDSI discovery protocol.
46
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

To determine the default network interface, DDSI2 ranks the eligible interfaces by
quality, and then selects the interface with the highest quality. If multiple interfaces
are of the highest quality, it will select the first enumerated one. Eligible interfaces
are those that are up and have the right kind of address family (IPv4 or IPv6).
Priority is then determined as follows:
• interfaces with a non-link-local address are preferred over those with a link-local

one;
• multicast-capable is preferred, or if none is available
• non-multicast capable but neither point-to-point, or if none is available
• point-to-point, or if none is available
• loopback
If this procedure doesn’t select the desired interface automatically, it can be
overridden by setting General/NetworkInterfaceAddress to either the name of the
interface, the IP address of the host on the desired interface, or the network portion
of the IP address of the host on the desired interface. An exact match on the address
is always preferred and is the only option that allows selecting the desired one when
multiple addresses are tied to a single interface.
The default address family is IPv4, setting General/UseIPv6 will change this to
IPv6. Currently, DDSI2 does not mix IPv4 and IPv6 addressing. Consequently, all
DDSI participants in the network must use the same addressing mode. When
interoperating, this behaviour is the same, i.e., it will look at either IPv4 or IPv6
addresses in the advertised address information in the SPDP and SEDP discovery
protocols.
IPv6 link-local addresses are considered undesirable because they need to be
published and received via the discovery mechanism, but there is in general no way
to determine to which interface a received link-local address is related.
If IPv6 is requested and the preferred interface has a non-link-local address, DDSI2
will operate in a ‘global addressing’ mode and will only consider discovered
non-link-local addresses. In this mode, one can select any set of interface for
listening to multicasts. Note that this behaviour is essentially identical to that when
using IPv4, as IPv4 does not have the formal notion of address scopes that IPv6 has.
If instead only a link-local address is available, DDSI2 will run in a ‘link-local
addressing’ mode. In this mode it will accept any address in a discovery packet,
assuming that a link-local address is valid on the preferred interface. To minimise
the risk involved in this assumption, it only allows the preferred interface for
listening to multicasts.
When a remote participant publishes multiple addresses in its SPDP message (or in
SEDP messages, for that matter), it will select a single address to use for
communicating with that participant. The address chosen is the first eligible one on
47
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

the same network as the locally chosen interface, else one that is on a network
corresponding to any of the other local interfaces, and finally simply the first one.
Eligibility is determined in the same way as for network interfaces.

2.5.3.1.1 Multicasting
DDSI2 allows configuring to what extent multicast is to be used:
• whether to use multicast for data communications,
• whether to use multicast for participant discovery,
• on which interfaces to listen for multicasts.
It is advised to allow multicasting to be used. However, if there are restrictions on
the use of multicasting, or if the network reliability is dramatically different for
multicast than for unicast, it may be attractive to disable multicast for normal
communications. In this case, setting General/AllowMulticast (see Section
4.7.1.1.9.2 on page 336) to false will force DDSI2 to use unicast communications
for everything except the periodic distribution of the participant discovery
messages.
If at all possible, it is strongly advised to leave multicast-based participant discovery
enabled, because that avoids having to specify a list of nodes to contact, and it
furthermore reduces the network load considerably. However, if need be, one can
disable the part icipant discovery from sending mult icasts by set t ing
Internal/SuppressSpdpMulticast to true (see Section 4.7.1.1.7.18 on page 325).
To disable incoming multicasts, or to control from which interfaces multicasts are to
be accepted, one can use the General/MulticastRecvInterfaceAddresses setting (see
Section 4.7.1.1.9.11 on page 340). This allows listening on no interface, the
preferred, all or a specific set of interfaces.

2.5.3.1.2 Discovery configuration

2.5.3.1.3 Discovery addresses
The DDSI discovery protocols, SPDP for the domain participants and SEDP for
their endpoints, usually operate well without any explicit configuration. Indeed, the
SEDP protocol never requires any configuration.
DDSI2 by default uses the domain id as specified in //OpenSplice/Domain/Id (see
Section 4.2.1 on page 95), but allows overriding it for special configurations using
the Discovery/DomainId setting. The domain id is the basis for all UDP/IP port
number calculations, which can be tweaked when necessary using the configuration
settings under Discovery/Ports. It is however rarely necessary to change the
standardised defaults.
48
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

The SPDP protocol periodically sends, for each domain participant, an SPDP
sample to a set of addresses, which by default contains just the multicast address,
which is standardised for IPv4 (239.255.0.1), but not for IPv6 (it uses
ff02::ffff:239.255.0.1). The actual address can be overridden using the
Discovery/SPDPMulticastAddress setting (see Section 4.7.1.1.5.1 on page 305),
which requires a valid multicast address.
In addition (or as an alternative) to the multicast-based discovery, any number of
unicast addresses can be configured as addresses to be contacted by specifying peers
in the Discovery/Peers section (see Section 4.7.1.1.5.6 on page 311). Each time an
SPDP message is sent, it is sent to all of these addresses.
Default behaviour of DDSI2 is to include each IP address several times in the set,
each time with a different UDP port number (corresponding to another participant
index), allowing at least several applications to be present on these hosts.
Obviously, configuring a number of peers in this way causes a large burst of packets
to be sent each time an SPDP message is sent out, and each local DDSI participant
causes a burst of its own. Most of the participant indices will not actually be use,
making this rather wasteful behaviour.
DDSI2 allows explicitly adding a port number to the IP address, formatted as
IP:PORT, to avoid this waste, but this requires manually calculating the port
number. In practice it also requires fixing the participant index using
Discovery/ParticipantIndex (see the description of ‘PI’ in Section 2.5.3.3,
Controlling port numbers, starting on page 51) to ensure that the configured port
number indeed corresponds to the remote DDSI2 (or other DDSI implementation),
and therefore is really practicable only in a federated deployment.

2.5.3.1.4 Asymmetrical discovery
On reception of an SPDP packet, DDSI2 adds the addresses advertised in that SPDP
packet to this set, allowing asymmetrical discovery. In an extreme example, if SPDP
multicasting is disabled entirely, host A has the address of host B in its peer list and
host B has an empty peer list, then B will eventually discover A because of an SPDP
message sent by A, at which point it adds A’s address to its own set and starts
sending its own SPDP message to A, allowing A to discover B. This takes a bit
longer than normal multicast based discovery, though.

2.5.3.1.5 Timing of SPDP packets
The interval with which the SPDP packets are transmitted is configurable as well,
using the Discovery/SPDPInterval setting. A longer interval reduces the network
load, but also increases the time discovery takes, especially in the face of temporary
network disconnections.
49
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.3.1.6 Endpoint discovery
Although the SEDP protocol never requires any configuration, the network
partitioning of OpenSplice DDSI2E does interact with it: so-called ‘ignored
partitions’ can be used to instruct DDSI2 to completely ignore certain DCPS topic
and partition combinations, which will prevent DDSI2 from forwarding data for
these topic/partition combinations to and from the network.
While it is rarely necessary, it is worth mentioning that by overriding the domain id
used by DDSI in conjunction with ignored partitions and unique SPDP multicast
addresses allows partitioning the data and giving each partition its own instance of
DDSI2.

2.5.3.2 Combining multiple participants
In an OpenSplice standalone deployment the various configured services, such as
spliced and DDSI2, still retain their identity by creating their own DCPS domain
participants. DDSI2 faithfully mirrors all these participants in DDSI, and it will
appear at the DDSI level as if there is a large system with many participants,
whereas in reality there are only a few application participants.
The Internal/SquashParticipants option (see Section 4.7.1.1.7.9 on page 320) can be
used to simulate the existence of only one participant, the DDSI2 service itself,
which owns all endpoints on that node. This reduces the background messages
because far fewer liveliness assertions need to be sent.
Clearly, the liveliness monitoring features that are related to domain participants
will be affected if multiple DCPS domain participants are combined into a single
DDSI domain participant. The OpenSplice services all use a liveliness QoS setting
of AUTOMATIC, which works fine.
In a federated deployment, the effect of this option is to have only a single DDSI
domain participant per node. This is of course much more scalable, but in no way
resembles the actual structure of the system if there are in fact multiple application
processes running on that node.
However, in OpenSplice the built-in topics are not derived from the DDSI
discovery, and hence in an OpenSplice-only network the use of the
Internal/SquashParticipants setting (see Section 4.7.1.1.7.9 on page 320) will not
result in any loss of information in the DCPS API or in the OpenSplice tools such as
the Tester.
When interoperability with another vendor is not needed, enabling the
SquashParticipants option is often a good choice.
50
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.3.3 Controlling port numbers
The port numbers used by DDSI2 are determined as follows, where the first two
items are given by the DDSI specification and the third is unique to DDSI2 as a way
of serving multiple participants by a single DDSI instance:
• 2 ‘well-known’ multicast ports: B and B+1
• 2 unicast ports at which only this instance of DDSI2 is listening: B+PG*PI+10

and B+PG*PI+11
• 1 unicast port per domain participant it serves, chosen by the kernel from the

anonymous ports, i.e., >= 32768
where:
• B is Discovery/Ports/Base (7400) + Discovery/Ports/DomainGain (250) *

Domain/Id
• PG is Discovery/Ports/ParticipantGain (2)
• PI is Discovery/ParticipantIndex
The default values, taken from the DDSI specification, are in parentheses. There are
actually even more parameters, here simply turned into constants as there is
absolutely no point in ever changing these values—but they are configurable and the
interested reader is referred to the DDSI 2.1 specification, section 9.6.1.
PI is the most interesting, as it relates to having multiple instances of DDSI2 in the
same domain on a single node. In a federated deployment, this never happens
(exceptional cases excluded). Its configured value is either ‘auto’, ‘none’ or a
non-negative integer. This setting matters:
• When it is ‘auto’ (which is the default), DDSI2 probes UDP port numbers on

start-up, starting with PI = 0, incrementing it by one each time until it finds a pair
of available port numbers, or it hits the limit. The maximum PI it will ever choose
is currently still hard-coded at 9 as a way of limiting the cost of unicast discovery.
(It is recognised that this limit can cause issues in a standalone deployment.)

• When it is ‘none’ it simply ignores the ‘participant index’ altogether and asks the
kernel to pick two random ports (>= 32768). This eliminates the limit on the
number of standalone deployments on a single machine and works just fine with
multicast discovery while complying with all other parts of the specification for
interoperability. However, it is incompatible with unicast discovery.

• When it is a non-negative integer, it is simply the value of PI in the above
calculations. If multiple instances of DDSI2 on a single machine are needed, they
will need unique values for PI, and so for standalone deployments this particular
alternative is hardly useful.
51
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

Clearly, to fully control port numbers, setting Discovery/ParticipantIndex (= PI) to a
hard-coded value is the only possibility. In a federated deployment this is an option
that has very few downsides, and generally 0 will be a good choice.
By fixing PI, the port numbers needed for unicast discovery are fixed as well. This
allows listing peers as IP:PORT pairs, significantly reducing traffic, as explained in
the preceding subsection.
The other non-fixed ports that are used are the per-domain participant ports, the
third item in the list. These are used only because there exist some DDSI
implementations that assume each domain participant advertises a unique port
number as part of the discovery protocol, and hence that there is never any need for
including an explicit destination participant id when intending to address a single
domain participant by using its unicast locator. DDSI2 never makes this assumption,
instead opting to send a few bytes extra to ensure the contents of a message are all
that is needed. With other implementations, you will need to check.
If all DDSI implementations in the network include full addressing information in
the messages, like DDSI2, then the per-domain participant ports serve no purpose at
all. The default false setting of Compatibility/ManySocketsMode disables the
creation of these ports (see Section 4.7.1.1.4.7, Element ManySocketsMode, on page
304).
This setting has a few other side benefits as well, as there will generally be more
participants using the same unicast locator, improving the chances for requiring but
a single unicast even when addressing a multiple participants in a node. The obvious
case where this is beneficial is when one host has not received a multicast.

2.5.3.4 Coexistence with OpenSplice RTNetworking
D D S I 2 h a s a s p e c i a l m o d e , c o n f i g u r e d u s i n g
General/CoexistWithNativeNetworking, to allow it to operate in conjunction with
OpenSplice RTNetworking: in this mode DDSI2 only handles packets sent by other
vendors’ implementations, allowing all intra-OpenSplice traffic to be handled by the
RTNetworking service while still providing interoperability with other vendors.

2.5.4 Data path configuration

2.5.4.1 Data path architecture
The data path in DDSI2 consists of a transmitting and a receiving side. The main
path in the transmit side accepts data to be transmitted from the OpenSplice kernel
via a network queue and administrates and formats the data for transmission over
the network.
52
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

The secondary path handles asynchronous events such as the periodic generation of
writer Heartbeats and the transmitting of acknowledgement messages from readers
to writers, in addition to handling the retransmission of old data on request. These
requests can originate in packet loss, but also in requests for historical data from
transient-local readers.
Figure 5 overleaf gives an overview of the main data flow and the threads in a
configuration using two channels. Configuring multiple channels is an enhanced
feature that is available only in DDSI2E, but the principle is the same in both
variants.

Figure 5 Data flow using two channels

xmit.y

tev.y

xmit.x

tev.x

network
queue

tev

socket

socket

recv

socket

dq.builtins

dq.y

dq.x

O
p

e
nSp

lic
e

 ke
rne

l

N
e

tw
o

rk inte
rfa

c
e

retransmits
timed events
53
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.4.2 Transmit-side configuration

2.5.4.2.1 Transmit processing
DDSI2E divides the outgoing data stream into prioritised channels. These channels
are handled completely independently, effectively allowing mapping DDS transport
priorities to operating system thread priorities. Although the ability to define
multiple channels is limited to DDSI2E, DDSI2 uses the same mechanisms but is
restricted to what in DDSI2E is the default channel if none are configured explicitly.
For details on configuring channels, see Section 2.5.5.2, Channel configuration, on
page 59.
Each channel has its own transmit thread, draining a queue with samples to be
transmitted from the OpenSplice kernel. The maximum size of the queue can be
configured per channel, and the default for the individual channels is configured
using the Sizing/NetworkQueueSize setting. In DDSI2, this setting simply controls
the queue size, as the default channel of DDSI2E has the default queue size. A larger
queue size increases the potential latency and (shared) memory requirements, but
improves the possibilities for smoothing out traffic if the applications publish it in
bursts.
Once a networking service has taken a sample from the queue, it takes responsibility
for it. Consequently, if it is to be sent reliably and there are insufficient resources to
store it in the WHC, it must wait for resources to become available. See Section
2.5.2.5, Unresponsive readers & head-of-stream blocking, on page 45.
The DDSI control messages (Heartbeat, AckNack, &c.) are sent by a thread
dedicated to handling timed events and asynchronous transmissions, including
retransmissions of samples on request of a reader. This thread is known as the
‘timed-event thread’ and there is at least one such thread, but each channel can have
its own one.
DDSI2E can also perform traffic shaping and bandwidth limiting, configurable per
channel, and with independent limits for data on the one hand and control and
retransmissions on the other hand.

2.5.4.2.2 Retransmit merging
A remote reader can request retransmissions whenever it receives a Heartbeat and
detects samples are missing. If a sample was lost on the network for many or all
readers, the next heartbeat is likely to trigger a ‘storm’ of retransmission requests.
Thus, the writer should attempt merging these requests into a multicast
retransmission, to avoid retransmitting the same sample over & over again to many
different readers. Similarly, while readers should try to avoid requesting
retransmissions too often, in an interoperable system the writers should be robust
against it.
54
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

In DDSI2, upon receiving a Heartbeat that indicates samples are missing, a reader
will schedule a retransmission request to be sent after Internal/NackDelay (see
Section 4.7.1.1.7.26 on page 329), or combine it with an already scheduled request
if possible. Any samples received in between receipt of the Heartbeat and the
sending of the AckNack will not need to be retransmitted.
Secondly, a writer attempts to combine retransmit requests in two different ways.
The first is to change messages from unicast to multicast when another retransmit
request arrives while the retransmit has not yet taken place. This is particularly
effective when bandwidth limiting causes a backlog of samples to be retransmitted.
The b eha v iou r o f t he s eco nd c an b e co n f igu r ed u s ing t h e
Internal/RetransmitMerging setting (see Section 4.7.1.1.7.4 on page 318). Based on
this setting, a retransmit request for a sample is either honoured unconditionally, or
it may be suppressed (or ‘merged’) if it comes in shortly after a multicasted
retransmission of that very sample, on the assumption that the second reader will
likely receive the retransmit, too. The Internal/RetransmitMergingPeriod (see
Section 4.7.1.1.7.7 on page 319) controls the length of this time window.

2.5.4.2.3 Retransmit backlogs
Another issue is that a reader can request retransmission of many samples at once.
When the writer simply queues all these samples for retransmission, it may well
result in a huge backlog of samples to be retransmitted. As a result, the ones near the
end of the queue may be delayed by so much that the reader issues another
retransmit request. DDSI2E provides bandwidth limiting, which makes the situation
even worse, as it can significantly increase the time it takes for a sample to be sent
out once it has been queued for retransmission.
Therefore, DDSI2 limits the number of samples queued for retransmission and
ignores (those parts of) retransmission requests that would cause the retransmit
queue to contain too many samples or take too much time to process. There are two
settings governing the size of these queues, and the limits are applied per
timed-event thread (i.e., the global one, and typically one for each configured
channe l wi th l imi ted bandwidth when us ing DDSI2E) . The f i r s t i s
Internal/MaxQueuedRexmitMessages (see Section 4.7.1.1.7.17 on page 324), which
l i m i t s t h e n u m b e r o f , r e t r a n s mi t m e s s a g e s , t h e s e c o n d
Internal/MaxQueuedRexmitBytes (see Section 4.7.1.1.7.14 on page 323) which
limits the number of bytes. The latter is automatically set based on the combination
of the allowed transmit bandwidth and the Internal/NackDelay (see Section
4.7.1.1.7.26 on page 329) setting, as an approximation of the likely time until the
next potential retransmit request from the reader.
55
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.4.2.4 Controlling fragmentation
Samples in DDS can be arbitrarily large, and will not always fit within a single
datagram. DDSI has facilities to fragment samples so they can fit in UDP
datagrams, and similarly IP has facilities to fragment UDP datagrams to into
network packets. The DDSI specification states that one must not unnecessarily
fragment at the DDSI level, but DDSI2 simply provides a fully configurable
behaviour.
If the serialised form of a sample is at least Internal/FragmentSize (see Section
4.7.1.1.7.28 on page 329), it will be fragmented using the DDSI fragmentation. All
but the last fragment will be exactly this size; the last one may be smaller.
Control messages, non-fragmented samples, and sample fragments are all subject to
packing into datagrams before sending it out on the network, based on various
attributes such as the destination address, to reduce the number of network packets.
This packing allows datagram payloads of up to Internal/MaxMessageSize (see
Section 4.7.1.1.7.25 on page 328), overshooting this size if the set maximum is too
small to contain what must be sent as a single unit. Note that in this case, there is a
real problem anyway, and it no longer matters where the data is rejected, if it is
rejected at all. UDP/IP header sizes are not taken into account in this maximum
message size.
The IP layer then takes this UDP datagram, possibly fragmenting it into multiple
packets to stay within the maximum size the underlying network supports. A
trade-off to be made is that while DDSI fragments can be retransmitted individually,
the processing overhead of DDSI fragmentation is larger than that of UDP
fragmentation.

2.5.4.3 Receive-side configuration

2.5.4.3.1 Receive processing
Receiving of data is split into multiple threads, as also depicted in the overall DDSI2
data path diagram above:
• A single receive thread responsible for retrieving network packets and running the

protocol state machine;
• A delivery thread dedicated to processing DDSI built-in data: participant

discovery, endpoint discovery and liveliness assertions;
• One or more delivery threads dedicated to the handling of application data:

deserialisation and delivery to the DCPS data reader caches.
56
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

The receive thread is responsible for retrieving all incoming network packets,
running the protocol state machine, which involves scheduling of AckNack and
Heartbeat messages and queueing of samples that must be retransmitted, and for
defragmenting and ordering incoming samples.
For a specific proxy writer—the local manifestation of a remote DDSI data writer—
with a number of data readers, the organisation is as shown in Figure 6 overleaf:

Figure 6 Proxy writer with multiple data readers

Fragmented data first enters the defragmentation stage, which is per proxy writer.
The number of samples that can be defragmented simultaneously is limited, for
reliable data to Internal/DefragReliableMaxSamples (see Section 4.7.1.1.7.10 on
page 321) and for unreliable data to Internal/DefragUnreliableMaxSamples (see
Section 4.7.1.1.7.8 on page 320).
Samples (defragmented if necessary) received out of sequence are buffered,
primarily per proxy writer, but, secondarily, per reader catching up on historical
(t r a n s i e n t - lo c a l) d a t a . T h e s i z e o f t h e f i r s t i s l i m i t e d t o
Internal/PrimaryReorderMaxSamples (see Section 4.7.1.1.7.3 on page 317), the size
of the second to Internal/SecondaryReorderMaxSamples (see Section 4.7.1.1.7.5 on
page 318).
In between the receive thread and the delivery threads sit queues, of which the
maximum size is controlled by the Internal/DeliveryQueueMaxSamples (see
Section 4.7.1.1.7.31 on page 331) setting. Generally there is no need for these
queues to be very large, their primary function is to smooth out the processing when
batches of samples become available at once, for example following a
retransmission.

secondary
reorder

connection

DDSI proxy writer

N
e

tw
o

rk

O
p

e
nSp

lic
e

 ke
rne

l

DDSI reader 3

defrag primary
reorder

DDSI reader 1connection DCPS reader 1

DCPS reader 3

DDSI reader 2connection DCPS reader 2

historical data for reader 3

new data for all readers
57
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

When any of these receive buffers hit their size limit, DDSI2 will drop incoming
(fragments of) samples and/or buffered (fragments of) samples to ensure the receive
thread can continue to make progress. Such dropped samples will eventually be
retransmitted.

2.5.4.3.2 Minimising receive latency
In low-latency environments, a few microseconds can be gained by processing the
application data directly in the receive thread, or synchronously with respect to the
incoming network traffic, instead of queueing it for asynchronous processing by a
delivery thread. This happens for data transmitted with the max_latency QoS setting
at most a configurable value and the transport_priority QoS setting at least a
configurable value. By default, these values are 0 and the maximum transport
priority, effectively disabling synchronous delivery for all but the most important
and urgent data. See the Internal/SynchronousDeliveryLatencyBound and
Internal/SynchronousDeliveryPriorityThreshold settings (see Secion 4.7.1.1.7.24 on
page 327 and Section 4.7.1.1.7.23 on page 327).

2.5.4.4 Direction-independent settings

2.5.4.4.1 Maximum sample size
DDSI2 provides a setting, Internal/MaxSampleSize (see Section 4.7.1.1.7.32,
Element MaxSampleSize, on page 331), to control the maximum size of samples that
the service is willing to process. The size is the size of the (CDR) serialised payload,
and the limit holds both for built-in data and for application data. The (CDR)
serialised payload is never larger than the in-memory representation of the data.
On the transmitting side, samples larger than MaxSampleSize are dropped with a
warning in the OpenSplice info log. DDSI2 behaves as-if the sample never existed.
The current structure of the interface between the OpenSplice kernel and the
OpenSplice networking services unfortunately prevents DDSI2 from properly
reporting this back to the application that wrote the sample, so the only guaranteed
way of detecting the dropping of the sample is by checking the info log.
Similarly, on the receiving side, samples large than MaxSampleSize are dropped,
and this is done as early as possible, immediately following the reception of a
sample or fragment of one, to prevent any resources from being claimed for longer
than strictly necessary. Where the transmitting side completely ignores the sample,
on the receiving side DDSI2 pretends the sample has been correctly received and, at
the DDSI2 level, acknowledges reception to the writer when asked. This allows
communication to continue.
58
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

When the receiving side drops a sample, readers will get a ‘sample lost’ notification
at the next sample that does get delivered to those readers. This condition means that
again checking the info log is ultimately the only truly reliable way of determining
whether samples have been dropped or not.
While dropping samples (or fragments thereof) as early as possible is beneficial
from the point of view of reducing resource usage, it can make it hard to decide
whether or not dropping a particular sample has been recorded in the log already.
Under normal operational circumstances, DDSI2 will report a single event for each
sample dropped, but it may on occasion report multiple events for the same sample.
Finally, it is technically allowed to set MaxSampleSize to very small sizes, even to
the point that the discovery data can’t be communicated anymore. The dropping of
the discovery data will be duly reported, but the usefulness of such a configuration
seems doubtful.

2.5.5 DDSI2E Enhanced features

2.5.5.1 Introduction
DDSI2E is an enhanced version of the DDSI2 service, adding three major features:
• Channels: parallel processing of independent data stream, with prioritisation

based on the transport priority setting of the data writers, and supporting
traffic-shaping of outgoing data;

• Network partitions: use of special multicast addresses for some partition-topic
combinations as well as allowing ignoring data; and

• Encryption: encrypting all traffic for a certain network partition.
This section provides details on the configuration of these three features.

2.5.5.2 Channel configuration

2.5.5.2.1 Overview
DDSI2E allows defining channels, which are independent data paths within the
DDSI service. OpenSplice chooses a channel based by matching the transport
priority QoS setting of the data writer with the threshold specified for the various
channels. Because each channel has a set of dedicated threads to perform the
processing and the thread priorities can all be configured, it is straightforward to
guarantee that samples from high-priority data writers will get precedence over
those from low-priority data throughout the service stack.
59
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

A second aspect to the use of channels is that the head-of-line blocking mentioned
in Section 2.5.2.5, Unresponsive readers & head-of-stream blocking, on page 45.
Unresponsive readers & head-of-stream blocking is per channel, guaranteeing that a
high-priority channel will not be disrupted by an unresponsive reader of low-priority
data.
The channel-specific threads perform essentially all processing (serialisation, writer
history cache management, deserialisation, delivery to DCPS data readers, &c.), but
there still is one shared thread involved. This is the receive thread (‘recv’) that
demultiplexes incoming packets and implements the protocol state machine. The
receive thread only performs minimal work on each incoming packet, and never has
to wait for the processing of user data.
The existence of the receive thread is the only major difference between DDSI2E
channels and those of the OpenSplice RTNetworking service: in the RTNetworking
service, each thread is truly independent. This change is the consequence of
DDSI2E interoperating with implementations that are not aware of channels and
with DDSI2E nodes that have differently configured channels, unlike the
RTNetworking service where all nodes must use exactly the same channel
definitions.
When configuring multiple channels, it is recommended to set the CPU priority of
the receive thread to at least that of the threads of the highest priority channel, to
ensure the receive thread will be scheduled in promptly.
If no channels are defined explicitly, a single, default channel is used. In DDSI2
(rather than DDSI2E), the processing is as-if only this default channel exists.

2.5.5.2.2 Transmit side
For each discovered local data writer, DDSI2E determines the channel to use. This
is the channel with the lowest threshold priority of all channels that have a threshold
priority that is higher than the writer’s transport priority. If there is no such channel,
i.e., the writer has a transport priority higher than the highest channel threshold, the
channel with the highest threshold is used.
Each channel has its own network queue into which the OpenSplice kernel writes
samples to be transmitted and that DDSI2E reads. The size of this queue can be set
for each channel independently by using Channels/Channel/QueueSize, with the
default taken from the global Sizing/NetworkQueueSize.
Bandwidth limiting and traffic shaping are configured per channel as well. The
following parameters are configurable:
• bandwidth limit
• auxiliary bandwidth limit
• IP QoS settings
60
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

The traffic shaping is based on a leaky bucket algorithm: transmit credits are added
at a constant rate, the total transmit credit is capped, and each outgoing packet
reduces the available transmit credit. Outgoing packets must wait until enough
transmit credits are available.
Each channel has two separate credits: data and auxiliary. The data credit is used
strictly for transmitting fresh data (i.e., directly corresponding to writes, disposes,
&c.) and control messages directly caused by transmitting that data. This credit is
configured using the Channels/Channel/DataBandwidthLimit setting. By default, a
channel is treated as if it has infinite data credit, disabling traffic shaping.
The auxiliary credit is used for everything else: asynchronous control data &
r e t r a n s mi s s i o n s , a nd i s c o n f i g u r e d u s i n g t h e
Channels/Channel/AuxiliaryBandwidthLimit setting (see Section 4.7.2.1.2.1.6 on
page 349).
When an auxiliary bandwidth limit has been set explicitly, or when one explicitly
sets, e.g., a thread priority for a thread named ‘tev.channel-name’, an independent
event thread handles the generation of auxiliary data for that channel. But if neither
is given, the global event thread instead handles all auxiliary data for the channel.
The global event thread has an auxiliary credit of its own, configured using
Internal/AuxiliaryBandwidthLimit (see Section 4.7.2.1.5.1 on page 357). This credit
applies to all discovery related traffic, as well as to all auxiliary data generated by
channels without their own event thread.
Generally, it is best to simply specify both the data and the auxiliary bandwidth for
each channel separately, and set Internal/AuxiliaryBandwidthLimit (see Section
4.7.2.1.5.1 on page 357) to limit the network bandwidth the discovery & liveliness
protocols can consume.

2.5.5.2.3 Receive side
On the receive side, the single receive thread accepts incoming data and runs the
protocol state machine. Data ready for delivery to the local data readers is queued on
the delivery queue for the channel that best matches the proxy writer that wrote the
data, according to the same criterion used for selecting the outgoing channel for the
data writer.
The delivery queue is emptied by the delivery thread, ‘dq.channel-name’, which
deserialises the data and updates the data readers. Because each channel has its own
delivery thread with its own scheduling priority, once the data leaves the receive
thread and is enqueued for the delivery thread, higher priority data once again takes
precedence over lower priority data.
61
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.5.2.4 Discovery traffic
DDSI discovery data is always transmitted by the global timed-event thread (‘tev’),
and always processed by the special delivery thread for DDSI built-in data
(‘dq.builtin’). By explicitly creating a timed-event thread, one effectively separates
application data from all discovery data. One way of creating such a thread is by
setting properties for it (see Section 2.5.6, Thread configuration, on page 63),
another is by setting a bandwidth limit on the auxiliary data of the channel (see
Section 2.5.5.2.2 on page 60 and Section 4.7.2.1.2.1.6 on page 349).

2.5.5.2.5 On interoperability
DDSI2E channels are fully compliant with the wire protocol. One can mix & match
DDSI2E with different sets of channels and with other vendors’ implementation.

2.5.5.3 Network partition configuration

2.5.5.3.1 Overview
Network partitions introduce alternative multicast addresses for data. In the DDSI
discovery protocol, a reader can override the default address at which it is reachable,
and this feature of the discovery protocol is used to advertise alternative multicast
addresses. The DDSI writers in the network will (also) multicast to such an
alternative multicast address when multicasting samples or control data.
The mapping of a DCPS data reader to a network partition is indirect: DDSI2E first
matches the DCPS data reader partitions and topic against a table of ‘partition
mappings’, partition/topic combinations to obtain the name of a network partition,
then looks up the network partition. This makes it easier to map many different
partition/topic combinations to the same multicast address without having to specify
the actual multicast address many times over.
If no match is found, DDSI2E automatically defaults to standardised DDSI
multicast address.

2.5.5.3.2 Matching rules
Matching of a DCPS partition/topic combination proceeds in the order in which the
partition mappings are specified in the configuration. The first matching mapping is
the one that will be used. The ‘*’ and ‘?’ wildcards are available for the DCPS
partition/topic combination in the partition mapping.
As mentioned earlier (see Section 2.5.2.3.1, Local discovery and built-in topics, on
page 40), DDSI2E can be instructed to ignore all DCPS data readers and writers for
certain DCPS partition/topic combinations through the use of ‘IgnoredPartitions’.
The ignored partitions use the same matching rules as normal mappings, and take
precedence over the normal mappings.
62
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.5.3.3 Multiple matching mappings
A single DCPS data reader can be associated with a set of partitions, and each
partition/topic combination can potentially map to a different network partitions. In
this case, DDSI2E will use the first matching network partition. This does not affect
what data the reader will receive; it only affects the addressing on the network.

2.5.5.3.4 On interoperability
DDSI2E network partitions are fully compliant with the wire protocol. One can mix
& match DDSI2E with different sets of network partitions and with other vendors’
implementation.

2.5.5.4 Encryption configuration

2.5.5.4.1 Overview
DDSI2E encryption support allows defining ‘security profiles’, named
combinations of (symmetrical block) ciphers and keys. These can be associated with
subsets of the DCPS data writers via the network partitions: data from a DCPS data
writer matching a particular network partition will be encrypted if that network
partition has an associated security profile.
The encrypted data will be tagged with a unique identifier for the network partition,
in cleartext. The receiving nodes use this identifier to lookup the network partition
& the associated encryption key and cipher.
Clearly, this requires that the definition of the encrypted network partitions must be
identical on the transmitting and the receiving sides. If the network partition cannot
be found, or if the associated key or cipher differs, the receiver will ignore the
encrypted data. It is therefore not necessary to share keys with nodes that have no
need for the encrypted data.
The encryption is performed per-packet; there is no chaining from one packet to the
next.

2.5.5.4.2 On interoperability
Encryption is not yet a standardised part of DDSI, but the standard does allow
vendor-specific extensions. DDSI2E encryption relies on a vendor-specific
extension to marshal encrypted data into valid DDSI messages, but they cannot be
interpreted by implementations that do not recognise this particular extension.

2.5.6 Thread configuration
DDSI2 creates a number of threads and each of these threads has a number of
properties that can be controlled individually. The threads involved in the data path
are shown in Figure 5 on page 53 in Section 2.5.4.1, Data path architecture.
The properties that can be controlled are:
63
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

• stack size,
• scheduling class, and
• scheduling priority.
The threads are named and the Threads/Thread[@name] (see Section 4.7.1.1.2.1.1
on page 296) attribute is used to set the properties by thread name. Any subset of
threads can be given special properties; anything not specified explicitly is left at the
default value.
The following threads exist:
• gc: garbage collector, which sleeps until garbage collection is requested for an

entity, at which point it starts monitoring the state of DDSI2, pushing the entity
through whatever state transitions are needed once it is safe to do so, ending with
the freeing of the memory.

• main: the main thread of DDSI2, which performs start-up and teardown and
monitors the creation and deletion of entities in the local node using the built-in
topics.

• recv: accepts incoming network packets from all sockets/ports, performs all
protocol processing, queues (nearly) all protocol messages sent in response for
handling by the timed-event thread, queues for delivery or, in special cases,
delivers it directly to the data readers.

• dq.builtins: processes all discovery data coming in from the network.
• lease: performs internal liveliness monitoring of DDSI2 and renews the

OpenSplice kernel lease if the status is satisfactory.
• tev: timed-event handling, used for all kinds of things, such as: periodic

transmission of participant discovery and liveliness messages, transmission of
control messages for reliable writers and readers (except those that have their own
timed-event thread), retransmitting of reliable data on request (except those that
have their own timed-event thread), and handling of start-up mode to normal
mode transition.

and, for each defined channel:
• xmit.channel-name: takes data from the OpenSplice kernel’s queue for this

channel, serialises it and forwards it to the network.
• dq.channel-name: deserialisation and asynchronous delivery of all user data.
• tev.channel-name: channel-specific ‘timed-event’ handling: transmission of

control messages for reliable writers and readers and retransmission of data on
request. Channel-specific threads exist only if the configuration includes an
element for it or if an auxiliary bandwidth limit is set for the channel.
64
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

For DDSI2, and DDSI2E when no channels are explicitly defined, there is one
channel named ‘user’.

2.5.7 Reporting and tracing
DDSI2 can produce highly detailed traces of all traffic and internal activities. It
allows enabling individual categories of information, as well as having a simple
verbosity level that enables fixed sets of categories and of which the definition
corresponds to that of the other OpenSplice services.
The categorisation of tracing output is incomplete and hence most of the verbosity
levels and categories are not of much use in the current release. This is an ongoing
process and here we describe the target situation rather than the current situation.
All ‘fatal’ and ‘error’ messages are written both to the DDSI2 log and to the
ospl-error.log file; similarly all ‘warning’ messages are written to the DDSI2 log
and the ospl-info.log file.
The Tracing element has the following sub elements:
• Verbosity: selects a tracing level by enabled a pre-defined set of categories. The

list below gives the known tracing levels, and the categories they enable:
 - none
 - severe: ‘error’ and ‘fatal’
 - warning, info: severe + ‘warning’
 - config: info + ‘config’
 - fine: config + ‘discovery’
 - finer: fine + ‘traffic’, ‘timing’ and ‘info’
 - finest: fine + ‘trace’

• EnableCategory: a comma-separated list of keywords, each keyword enabling
individual categories. The following keywords are recognised:
 - fatal: all fatal errors, errors causing immediate termination
 - error: failures probably impacting correctness but not necessarily causing

immediate termination.
 - warning: abnormal situations that will likely not impact correctness.
 - config: full dump of the configuration
 - info: general informational notices
 - discovery: all discovery activity
 - data: include data content of samples in traces
 - radmin: receive buffer administration
65
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

 - timing: periodic reporting of CPU loads per thread
 - traffic: periodic reporting of total outgoing data

In addition, the keyword ‘trace’ enables all but ‘radmin’.
• OutputFile: the file to which to write the DDSI2 log to
• AppendToFile: boolean, set to ‘true’ to append to the log instead of replacing the

file.
Currently, the useful verbosity settings are ‘config’ and ‘finest’. ‘Config’ writes the
full configuration to the DDSI2 log file as well as any warnings or errors, which can
be a good way to verify everything is configured and behaving as expected. ‘Finest’
provides a detailed trace of everything that occurs and is an indispensable source of
information when analysing problems; however, it also requires a significant
amount of time and results in huge log files.
Whether these logging levels are set using the verbosity level or by enabling the
corresponding categories is immaterial.

2.5.8 Compression
This section describes the options available for configuring compression of the data
packets sent by the Networking Service.
In earlier OpenSplice 6.x releases, the zlib library was used at its default setting
whenever the compression option on a network partition was enabled. In this release
it is possible to configure zlib for less cpu usage or for more compression effort, or
to select a compressor written specifically for high speed, or to plug in an alternative
algorithm.
The configuration for compression in a Networking Service instance is contained in
the optional top-level Element Compression (see Section 4.4.1.8 on page 241).
These settings apply to all partitions in which compression is enabled.

2.5.8.1 Availability
The compression functionality is available on enterprise platforms (i.e. Linux,
Windows and Solaris). On embedded platforms there are no built-in compressors
included, but plugins may be used.

2.5.8.2 How to set the level parameter in zlib
Set the Attribute PluginParameter to a single digit between 0 (no compression) and
9 (maximum compression, more CPU usage). Leave the Attribute PluginLibrary
and Attribute PluginInitFunction blank.
66
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

2.5.8.3 How to switch to other built-in compressors
Set the Attribute PluginInitFunction to the name of the initialisation function of one
of the bui l t - in compressors . These are /ospl_comp_zlib_init/ ,
/ospl_comp_lzf_init/ and /ospl_comp_snappy_init/ for zlib, lzf and
snappy respectively. As a convenience, the short names zlib, lzf and snappy are
also recognized.
Please note that not all compressors are available on all platforms. In this release
zlib is available on Linux, Windows and Solaris; lzf and snappy are available
only on RedHat Linux.

2.5.8.4 How to write a plugin for another compression library
Other compression algorithms may be used by the Networking Service. In order to
do this it is necessary to build a library which maps the OpenSplice compression
API onto the algorithm in question. This library may contain the actual compressor
code or be dynamically linked to it.
Definit ions for the compression API are provided in the include f i le
plugin/nw_compPlugin.h. Five functions must be implemented.
The maxsize function.

This function is called when sizing a buffer into which to compress a network
packet. It should therefore return the worst-case (largest) possible size of
compressed data for a given uncompressed size. In most cases it is acceptable to
return the uncompressed size, as the compress operation is allowed to fail if the
resulting data is larger than the original (in which case the data is sent
uncompressed). However, snappy for example will not attempt compression
unless the destination buffer is large enough to take the worst possible result.

The compress function.
This function takes a block of data of a given size and compresses it into a
buffer of a given size. It returns the actual size of the compressed data, or zero if
an error ocurred (e.g. the destination buffer was not large enough).

The uncompress function.
This function takes a block of compressed data of given size and uncompresses
it into a buffer also of given size. It returns the actual size of the uncompressed
data, or zero if an error ocurred (e.g. the data was not in a valid compressed
format).

The exit function.
This function is called at service shutdown and frees any resources used by the
plugin.

i

67
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

The init function.
This function is called at service startup. It sets up the plugin by filling in a
structure containing pointers to the four functions listed above. It also is passed
the value of the Attribute PluginParameter. The plugin configuration structure
includes a pointer to some unspecified state data which may be used to hold this
parameter and/or any storage required by the compressor. This pointer is passed
into the compress and exit functions.

By way of illustration, here is a simplified version of the code for zlib. The
implementation is merely a veneer on the zlib library to present the required API.

|#include "nw_compPlugin.h"
#include "os_heap.h"
#include

unsigned long ospl_comp_zlib_maxsize (unsigned long srcsize)
{
 /* if the data can't be compressed into the same size buffer we'll send
uncompressed instead */
 return srcsize;
}

unsigned long ospl_comp_zlib_compress (void *dest, unsigned long destlen,
const void *source, unsigned long srclen, void *param)
{
 unsigned long compdsize = destlen;
 if (compress2 (dest, &compdsize, source, srclen, *(int *)param) ==
Z_OK)
 {
 return compdsize;
 }
 else
 {
 return 0;
 }
}

unsigned long ospl_comp_zlib_uncompress (void *dest, unsigned long
destlen, const void *source, unsigned long srclen)
{
 unsigned long uncompdsize = destlen;
 if (uncompress (dest, &uncompdsize, source, srclen) == Z_OK)
 {
 return uncompdsize;
 }
 else
 {
 return 0;
 }
}

68
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

void ospl_comp_zlib_exit (void *param)
{
 os_free (param);
}

void ospl_comp_zlib_init (nw_compressor *config, const char *param)
{
 /* param should contain an integer from 0 to 9 */

 int *iparam = os_malloc (sizeof (int));
 if (strlen (param) == 1)
 {
 *iparam = atoi (param);
 }
 else
 {
 *iparam = Z_DEFAULT_COMPRESSION;
 }
 config->maxfn = ospl_comp_zlib_maxsize;
 config->compfn = ospl_comp_zlib_compress;
 config->uncompfn = ospl_comp_zlib_uncompress;
 config->exitfn = ospl_comp_zlib_exit;
 config->parameter = (void *)iparam;
}

2.5.8.5 How to configure for a plugin
Step 1: Set Attribute PluginLibrary to the name of the library containing the plugin

implementation.
Step 2: Set Attribute PluginInitFunction to the name of the initialisation function within that

library.
Step 3: If the compression method is controlled by a parameter, set Attribute

PluginParameter to configure it.

2.5.8.6 Constraints
The Networking Service packet format does not include identification of which
compressor is in use. It is therefore necessary to use the same configuration on all
nodes.

2.5.9 Compatibility and conformance

2.5.9.1 Conformance modes
The DDSI2 service operates in one of three modes: pedantic, strict and lax, which is
configured using the Compatibility/StandardsConformance setting. The default is
lax.
69
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

In pedantic mode, it strives very hard to strictly conform to the DDSI 2.1 standard. It
even uses a vendor-specific extension for an essential element missing in the
specification, used for specifying the GUID of a DCPS data reader or data writer in
the discovery protocol; and it adheres to the specified encoding of the reliability
QoS. This mode is of interest for compliancy testing but not for practical use, even
though there is no application-level observable difference between an
all-OpenSplice system using the DDSI2 service in pedantic mode and one operating
in any of the other modes.
The second mode, strict, instead attempts to follow the intent of the specification
while staying close to the letter of it. The points in which it deviates from the
standard are in all probability editing errors that will be rectified in the next update.
When operated in this mode, one would expect it to be fully interoperable with the
other vendors’ implementations, but this is not the case. The deviations in the other
vendors’ implementations are not required to implement DDSI 2.1, as is proven by
the OpenSplice DDSI2 service, and they cannot rightly be considered ‘true’
implementations of the DDSI 2.1 standard.
The default mode, lax, attempts to work around (most of) the deviations of the other
implementations, and provides interoperability with (at least) RTI DDS and
InterCOM/Gallium DDS. For compatibility with TwinOaks CoreDX DDS,
additional settings are needed. See Section 2.5.9.1.2, Compatibility issues with
TwinOaks, on page 71 more information. In lax mode, the OpenSplice DDSI2
service not only accepts some invalid messages, but will even transmit them. The
consequences for interoperability of not doing this are simply too severe.
It should be noted that if one configures two OpenSplice nodes with DDSI2 in
different compliancy modes, the one in the stricter mode will complain about
messages sent by the one in the less strict mode. Pedantic mode will complain about
invalid encodings used in strict mode, strict mode will complain about illegal
messages transmitted by the lax mode. There is nonetheless interoperability
between strict and lax.

2.5.9.1.1 Compatibility issues with RTI
In lax mode, there should be no major issues with most topic types when working
across a network, but within a single host there is a known problem with the way
RTI DDS uses, or attempts to use, its shared memory transport to communicate with
OpenSplice, which clearly advertises only UDP/IP addresses at which it is
reachable. The result is an inability to reliably establish bidirectional
communication between the two.
70
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.5 The DDSI2 and DDSI2E Networking Services

Disposing data may also cause problems, as RTI DDS leaves out the serialised key
value and instead expects the reader to rely on an embedded hash of the key value.
In the strict modes, the DDSI2 service requires a proper key value to be supplied, in
the relaxed mode, it is willing to accept key hash, provided it is of a form that
contains the key values in an unmangled form.
If an RTI DDS data writer disposes an instance with a key of which the serialised
representation may be larger than 16 bytes, this problem is likely to occur. In
practice, the most likely cause is using a key as string, either unbounded, or with a
maximum length larger than 11 bytes. See the DDSI specification for details.
In strict mode, there is interoperation with RTI DDS, but at the cost of incredibly
high CPU and network load, caused by a Heartbeats and AckNacks going
back-and-forth between a reliable RTI DDS data writer and a reliable OpenSplice
DCPS data reader. The problem is that once the OpenSplice reader informs the RTI
writer that it has received all data (using valid AckNack message), the RTI writer
immediately publishes a message listing the range of available sequence numbers
and requesting an acknowledgement, which becomes an endless loop.
The best settings for interoperation appear to be:
• Compatibility/StandardsConforming: lax
• Compatibility/AckNackNumbitsEmptySet: 0
Note that the latter setting causes the DDSI2 service to generate illegal messages,
and is the default when in lax mode.

2.5.9.1.2 Compatibility issues with TwinOaks
Interoperability with TwinOaks CoreDX requires:
• Compatibility/ManySocketsMode: true
• Compatibility/StandardsConforming: lax
• Compatibility/AckNackNumbitsEmptySet: 0
• Compatibility/ExplicitlyPublishQosSetToDefault: true
The ManySocketsMode option needs to be changed from the default, to ensure that
each domain participant has a unique locator, which is needed because TwinOaks
CoreDX DDS does not include the full GUID of a reader or writer if it needs to
address just one. Note the behaviour of TwinOaks CoreDX DDS is allowed by the
specification.
The Compatibility/ExplicitlyPublishQosSetToDefault settings work around
TwinOaks CoreDX DDS’ use of incorrect default values for some of the QoS
settings if they are not explicitly supplied during discovery.
71
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.6 The Tuner Service

2.6 The Tuner Service
The Tuner Service provides a remote interface to the monitor and control facilities
of OpenSplice by means of the SOAP protocol. This enables the OpenSplice Tuner
to remotely monitor and control, from any reachable location, OpenSplice services
as well as the applications that use OpenSplice for the distribution of their data.
The exact fulfilment of these responsibilities is determined by the configuration of
the Tuner Service. There is an overview of the available configuration parameters
and their purpose in Section 4.4.1.7, Element Tracing, on page 234.

2.7 The DbmsConnect Service
The OpenSplice DbmsConnect Module is a pluggable service of OpenSplice that
provides a seamless integration of the real-time DDS and the non-/near-real-time
enterprise DBMS domains. It complements the advanced distributed information
storage features of the OpenSplice Persistence Module (and vice versa).
Where (relational) databases play an essential role to maintain and deliver typically
non- or near-real-time ‘enterprise’ information in mission systems, OpenSplice
targets the real-time edge of the spectrum of distributing and providing ‘the right
information at the right place at the right time’ by providing a Quality-Of-Service
(QoS) aware ‘real-time information backbone’.
Changing expecta t ions about the access ib i l i ty of informat ion f rom
remote/non-real-time information-stores and local/real-time sources lead to the
challenge of lifting the boundaries between both domains. The DbmsConnect
module of OpenSplice answers this challenge in the following ways:
• Transparently ‘connects’ the real-time DDS ‘information backbone’ to one or

more ‘enterprise’ databases
• Allows both enterprise as well as embedded/real-time applications to access and

share data in the most ‘natural’ way
• Allows OpenSplice to fault-tolerantly replicate enterprise information persisted in

multiple relational databases in real-time
• Provides a pure ODBC/JDBC SQL interface towards real-time information via its

transparent DbmsConnection
• Overcomes the lack of communication-control (QoS features controlling real-time

behavior) of ‘talking’ to a remote DBMS
• Overcomes the lack of traditional 3GL and 4GL tools and features in processing

information directly from a DDS backbone
• Allows for data-logging and analysis of real-time data persisted in a DBMS
• Aligns multiple and dispersed heterogeneous databases within a distributed

system using the QoS-enabled data-distribution features of OpenSplice

72
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

The DbmsConnect module is unique in its dynamic configurability to achieve
maximum performance:
• Dynamic DDS Partition/Topic selection and configurable content-filters to

exchange exactly ‘the right’ information critical for performance and
resource-challenged users

• Dynamic creation and mapping of DBMS database-tables and DDS topics to
allow seamless data-exchange, even with legacy data models

• Selectable update-triggering per table/topic allowing for both real-time
responsiveness as well as high-volume ‘batch transfers’

• Works with ANY 3rd party SQL:1999 compatible DBMS system with an ODBC
interface

The DbmsConnect module thus effectively eliminates traditional ‘barriers’ of the
standalone technologies by facilitating seamless data-exchange between any ODBC
c o m p l i a n t (S Q L) d a t a b a s e a n d t he O p e n S p l i c e ™ r e a l - t i m e D D S
‘information-backbone’. Applications in traditionally separated mission-system
domains can now exploit and leverage each other's information in a highly efficient
(based upon ‘current interest’ as supported by the publish/subscribe paradigm of
DDS), non-disruptive (obeying the QoS demands as expressed for data-items in
DDS) and distributed service-oriented paradigm.

2.7.1 Usage
In order to understand the configuration and working of the DbmsConnect service,
some basic concepts and use-cases will be covered in this chapter.

2.7.1.1 DDS and DBMS Concepts and Types Mapping
The concepts within DDS and DBMS are related to each other as listed in Table 1.
.

The primitive types available in both domains map onto each other as listed in Table
2 below:

Table 1 DDS <> DBMS mapping: concepts

DDS DBMS
Topic Table
Type Table structure
Instance Primary key
Sample Row
DataWriter.write() INSERT or UPDATE

DataWriter.dispose() DELETE
73
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

The mapping of complex (composite) types is as follows:
• Struct

 - Flattened out
 - Each member maps to a column with fully scoped name

• Union
 - Flattened out
 - Additional ‘#DISCRIMINATOR#’ column

• Enumeration
 - An ‘INTEGER’ typed column with fully scoped name

• Array and bounded sequence
 - Flattened out
 - ‘[index]’ appended to fully scoped column name

Table 2 DDS <> DBMS mapping: primitive types

DDS IDL type DBMS column type (SQL:1999)
boolean BOOLEAN/TINYINT

short SMALLINT

unsigned short SMALLINT

long INTEGER

unsigned long INTEGER

long long BIGINT

unsigned long long BIGINT

float REAL

double DOUBLE

octet BINARY(1)

char CHAR(1)

wchar CHAR(1)

string<length> VARCHAR(<length>)

wstring<length> VARCHAR(<length>)
74
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

2.7.1.2 General DbmsConnect Concepts
The DbmsConnect service can bridge data from the DDS domain to the DBMS
domain and vice versa. In DDS, data is represented by topics, while in DBMS data
is represented by tables. With DbmsConnect, a mapping between a topic and a table
can be defined.
Because not all topic-table mappings have to be defined explicitly (DbmsConnect
can do matching when the names are the same), namespaces can be defined. A
namespace specifies or limits the context of interest and allows for easy
configuration of all mappings falling (or defined in) a namespace. The context of
interest for bridging data from DDS to DBMS, consists of a partition- and
topicname expression. When bridging data from DBMS to DDS, the context of
interest consists of a table-name expression.
A mapping thus defines the relationship of a table in DBMS with a topic in DDS
and can be used to explicitly map a topic and table with different names, or define
settings for a specific mapping only.

2.7.1.3 DDS to DBMS Use Case
When data in the DDS domain has to be available in the DBMS domain, the
DbmsConnect service can be configured to facilitate that functionality. A topic in
DDS will be mapped to a table in DBMS.

Scenario
In the DDS domain, we have topics DbmsTopic and DbmsDdsTopic that we want
to make available to a database application. The database application expects the
data from topic DbmsTopic to be available in an existing table with name
DbmsTable. Data from the DbmsDdsTopic topic can be just forwarded to a table
(that not yet exists) with the same name. The scenario is shown in Figure 7.
75
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

Figure 7 DDS to DBMS scenario

Configuration
The configuration for the DbmsConnect service that fulfils the needs of the scenario
is given in the listing below.
1 ...
2 <DbmsConnectService name="dbmsconnect">
3 <DdsToDbms>
4 <NameSpace partition="*" topic="Dbms*"
5 dsn="DSN" usr="USR" pwd="PWD" odbc="ODBC">
6 <Mapping topic="DbmsTopic" table="DbmsTable"/>
7 </NameSpace>
8 </DdsToDbms>
9 </DbmsConnectService
10 ...

Explanation
On line 3 a DdsToDbms element is specified in order to configure data bridging
from DDS to DBMS. On line 4, a NameSpace is defined that has interest in all
topics start ing with "Dbms" in all part i t ions. Both the parti t ion- and
topic-expression make use of the *-wildcard (matching any sequence of characters).
These wildcards match both topics described in the scenario, but will possibly
match more. If the mapping should be explicitly limited to both topics, the
topic-expression can be changed to "DbmsTopic,DbmsDdsTopic".
The DbmsConnect service will implicitly map all matching topics to an equally
named table in the DBMS. While this is exactly what we want for the
DbmsDdsTopic, the database application expects the data from the DbmsTopic
topic to be mapped to table DbmsTable. This is explicitly configured in the
Mapping on line 6. If the tables already exist and the table-definition matches the
76
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

topic definition, the service will use that table. If a table does not exist, it will be
created by the service. If a table exists, but doesn’t match the topic definition, the
mapping fails.

2.7.1.4 DBMS to DDS Use Case
When data in the DBMS domain has to become available in the DDS domain, this
can be achieved by configuring the DbmsConnect service to map a table to a topic.

Scenario
In the DBMS, we have tables DbmsTable and DbmsDdsTopic that we want to
make available in the dbmsPartition partition in DDS. The database
application writes the data we want available in topic DbmsTopic to the table
named DbmsTable. Data from the DbmsDdsTopic table can be just forwarded to
the equally named topic.
When the DbmsConnect service is started, mapped tables may already contain data.
For the DbmsDdsTopic table, we are not interested in that data. For the DbmsTable
table however, we would like all data available to the database application to be
available to the DDS applications too. This scenario is the reverse (all arrows
reversed) situation of the scenario shown in Figure 7 on page 76

Configuration
The configuration for the DbmsConnect service that fulfils the needs of the scenario
is given in the listing below.
11 ...
12 <DbmsConnectService name="dbmsconnect">
13 <DbmsToDds publish_initial_data="false">
14 <NameSpace partition="dbmsPartition" table="Dbms*"
15 dsn="DSN" usr="USR" pwd="PWD" odbc="ODBC">
16 <Mapping topic="DbmsTopic" table="DbmsTable"
17 publish_initial_data="true"/>
18 </NameSpace>
19 </DbmsToDds>
20 </DbmsConnectService
21 ...

Explanation
On line 13 a DdsToDbms element is specified in order to configure data bridging
from DBMS to DDS. On line 14, a NameSpace is defined that has interest in all
tables starting with "Dbms". The table-expression makes use of the *-wildcard
(matching any sequence of characters). For this scenario, a single target partition is
specified. If needed, a partition expression containing multiple partitions or
77
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

wildcards can be used. For example when the DDS system is divided in two
partitions (to support applications running in a ‘simulation’- and a ‘real’ world) and
applications in both partition need access to the data from the DBMS.
The default setting for the publish_initial_data attribute is true. Because we
only want initially available data to be published for the DbmsTable-DbmsTopic
mapping, we define the default for all namespaces to be false on line 13. That
setting will be inherited by all underlying elements, but can be overridden. The
explicit Mapping specified on line 16 maps the table to the differently named topic.
On line 17, the publish_initial_data attribute is explicitly set to true,
overriding the setting set at line 13.

2.7.1.5 Replication Use Case
A specific application of data bridging from DDS to DBMS and DBMS to DDS is
replication of database (tables). Replication requires some specific configuration.
The basic configuration is covered in this use case.

Figure 8 Replication scenario

Scenario
We have a two database servers running on different hosts. The table DbmsTable
should be available on both database-servers and changes should be sent both ways.
This scenario is shown in Figure 8, where the dashed arrows show the transparant
role of DDS in this scenario.

Configuration
The configuration for the DbmsConnect service for both hosts, that fulfils the needs
of the scenario, is given in the listing below.
78
Deploying OpenSplice DDS

�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

22 ...
23 <DbmsConnectService name="dbmsconnect">
24 <DdsToDbms replication_mode="true">
25 <NameSpace partition="replication" topic="DbmsTable"
26 dsn="DSN" usr="REPLUSR" pwd="PWD" odbc="ODBC">
27 </NameSpace>
28 </DdsToDbms>
29 <DbmsToDds replication_user="REPLUSR">
30 <NameSpace partition="replication" table="DbmsTable"
31 dsn="DSN" usr="USR" pwd="PWD" odbc="ODBC">
32 </NameSpace>
33 </DbmsToDds>
34 </DbmsConnectService
35 ...

Explanation
The configuration for the replication scenario is symmetric in that it can be the same
for both hosts. The basic idea is simple: configure a mapping from DDS to DBMS
and from DBMS to DDS for the same table-topic pair within a partition (analogue to
the DDS to DBMS Use Case on page 75 and the DBMS to DDS Use Case on page
77). While this (intuitive) cyclic definition would work, more configuration is
needed to support this use case properly. In order to prevent modifications from
keeping to cause (cyclic) updates, the DbmsConnect service needs to be able to
distinguish between data that is modified as part of a replication scenario and data
that is changed by other sources.
For the DDS to DBMS mapping, replication data is identified by identification
information of the sending node. The DdsToDbms part of the service is put to
replication mode in line 24, which lets the service ignore all data transmitted by the
node on which the service itself runs.
For the DBMS to DDS mapping, a special database user has to be used, that is only
used by the DbmsConnect service, in order to be able to distinguish data from
different sources. The database user that is used in the DdsToDbms mapping has to
be excluded from update-cascading. This is specified on line 29 in the
replication_user attribute. This means that all data that is inserted in the table
by the user with the username specified in the replication_user attribute will
be ignored. So the user specified at line 26 has to be the same as the user specified
on line 29.
79
Deploying OpenSplice DDS�������	

2 The OpenSplice DDS Services 2.7 The DbmsConnect Service

80
Deploying OpenSplice DDS

�������	

CHAPTER

3 Tools
The OpenSplice DDS distribution contains several tools for a variety of different
purposes. This chapter categorizes the various tools and gives some background
about each of them. For each tool it will either refer to the appropriate manual, or
provide a separate section describing a more in-depth overview of the tools’
possibilities and command-line interface.

3.1 Introduction
The OpenSplice DDS tool chain is comprised of the following categories:
• Compilers/Code generators:

 - idlpp (IDL Pre-processor): parses and validates an IDL file containing your
DCPS data model. When valid, it generates a language specific representation
of this data model accompanied by the corresponding DCPS accessor classes
(e.g. DataReader, DataWriter and TypeSupport). More details about this tool
can be found in the IDL Pre-processor Guide contained in the file
OpenSplice_PreProcessor_usermanual.pdf.

 - rmipp (RMI pre-processor): parses and validates an IDL file containing your
RMI interface model. When valid, it generates a language specific
representation of this interface accompanied by the corresponding RMI-DDS
translators. More details about this tool can be found in section 3.4 of the
OpenSplice RMI over DDS Getting Started Guide contained in the file
OpenSplice_RMI_GettingStarted.pdf.

• Configuration Editor:
 - osplconf (OpenSplice Configurator): a GUI based editor for the OpenSplice

DDS configuration files, providing context sensitive validation and help. More
details about this tool can be found in Section 3.2, osplconf: the OpenSplice
Configuration editor, on page 82.

• Control & Monitoring Tools:
 - ospl (OpenSplice service manager): a tool that can be used to start, stop and

monitor the OpenSplice DDS Domain Service (only applicable to the Federated
Deployment Mode). More details about this tool can be found in Section 3.3,
ospl: the OpenSplice service manager, on page 85.
81
 Deploying OpenSplice DDS�������	

3 Tools 3.2 osplconf: the OpenSplice Configuration editor

 - mmstat (Memory Management Statistics): a tool that can display several
statistics about the shared memory that is currently being used by an
OpenSplice Domain Service (only applicable to the Federated Deployment
Mode). More details about this tool can be found in Section 3.4, mmstat:
Memory Management Statistics, on page 86.

 - ospltun (OpenSplice Tuner): a tool that can be used to monitor and control
individual DCPS entities. With this tool you can display the DCPS Entity trees
of your application, watch (and possibly modify) the Qos settings of an
individual DCPS entity, monitor the status flags it has currently raised, examine
many more statistics about these entities, and even monitor and inject samples
into your DCPS Readers/Writers. It can connect directly into the shared
memory (restricted to the Federated Deployment Mode), or through a socket to
a pre-configured Tuner Service using the SOAP protocol. More details about
this tool can be found in the OpenSplice DDS Tuner Guide contained in the file
OpenSplice_Tuner_usermanual.pdf.

 - ospltest (OpenSplice Tester): an automated testing and debugging tool that
can be used to receive and display messages produced in OpenSplice, and to
transmit your own messages either manually or with a script. Like the Tuner, it
can connect directly to the shared memory (restricted to the Federated
Deployment Mode), or through a socket to a pre-configured Tuner Service
using the SOAP protocol. More details about this tool can be found in the
OpenSplice Automated Testing and Debugging Tool User Guide contained in
the file OpenSplice_Tester_usermanual.pdf.

The following sections will provide some more details about those tools that do not
have a separate manual.

3.2 osplconf: the OpenSplice Configuration editor
The OpenSplice Configuration Editor provides the following command line
instruction:
-uri=[URI] — the domain config file that needs to be opened; e.g.

osplconf -uri=$OSPL_URI

When started the OpenSplice Configuration Editor can help you in several ways to
tailor the deployment settings for your OpenSplice DDS system:
• It displays the configured services as separate tabs in a tabbed pane.
• For each service, it displays the relevant service settings in a hierarchical tree.
• For each setting, it provides a context-sensitive description in the bottom pane.
82
Deploying OpenSplice DDS

�������	

3 Tools 3.2 osplconf: the OpenSplice Configuration editor

 - The content of this context-sensitive help is identical to the textual information
contained in Chapter 4, Service Configuration, starting on page 93 of this
manual. However, the tables preceding each description in this manual may give
some additional information regarding for example the unit of an attribute (e.g.
Bytes per resolution tick).

• The value of each element/attribute can be edited. A context-sensitive validation
algorithm will check whether your input satisfies the relevant criteria.
 - When the input color is orange, you are editing the value.
 - When the text field color is red, the value is unacceptable.
 - When the text field color is white, the new input value has been accepted.

A typical view of the OpenSplice Configurator is displayed below:

Figure 9 Typical Configurator view

A config file is opened using the top menu bar (File > Open) or the keyboard
shortcut Ctrl+O.
The appropriate service tab is selected.
83
Deploying OpenSplice DDS�������	

3 Tools 3.2 osplconf: the OpenSplice Configuration editor

If the appropriate service is not configured, and so its tab is not visible on the top, it
can be added by using the top menu-bar (Edit > Add Service).
The hierarchical tree on the left can be used to browse through the settings
applicable to the Service and possibly modify them.
The right pane shows the settings of the currently selected tree node.
An item prefixed with a ‘@’ represents an XML attribute. The other items represent
XML elements.
If the appropriate setting is not currently configured, and therefore not visible in the
tree, you can add it by right-clicking anywhere in the tree to open a context-sensitive
sub-menu displaying all available settings for that particular element in the tree.

Figure 10 Adding an element in Configurator

Once the appropriate modifications have been made, and are accepted by the
Configurator, the config file can be saved using the top menu bar (File > Save) or
the keyboard shortcut Ctrl+S.
Likewise, a config file can be written from scratch by using the top menu bar
(File > New) or the keyboard shortcut Ctrl+N.
84
Deploying OpenSplice DDS

�������	

3 Tools 3.3 ospl: the OpenSplice service manager

3.3 ospl: the OpenSplice service manager
The OpenSplice service manager (ospl) is a tool that monitors and controls the
lifecycle of the OpenSplice Domain Service (spliced), which in turn monitors and
controls all other OpenSplice services. This tool is only applicable to the Federated
Deployment Mode, because the Single Process Deployment Mode doesn’t need to
run external services. Basically you can view the OpenSplice service manager as a
controller around the OpenSplice Domain Service, that can be used to pass the
following command-line instructions to the Domain Service:
start [URI] — Starts a Domain Service for the specified URI. (It looks for the

environment variable OSPL_URI when no URI is explicitly passed.) The
Domain Service will in turn parse the config file indicated by the URI and start
all configured services according to their settings.
When done, the OpenSplice service manager will return one of the following
exit codes:
 0 normal termination when the Domain Service has successfully started.
 1 a recoverable error has occurred (e.g. out of resources)
 2 an unrecoverable error has occurred (e.g. config file contains errors).
When also passing the -f flag, the OpenSplice service manager will not return
the command prompt, but remain blocked until the Domain Service successfully
terminates. Any termination event sent to the service manager will in that case
be forwarded to the Domain Service it manages.

stop [URI] — Stops the Domain Service for the specified URI. (It looks for the
environment variable OSPL_URI when no URI is explicitly passed.) The
Domain Service will in turn wait for all the services it currently monitors to
terminate gracefully and will then terminate itself.
When done, the OpenSplice service manager will return one of the following
exit codes:
 0 normal termination when the Domain Service has successfully terminated.
 2 an unrecoverable error has occurred (e.g. config file cannot be resolved).
When passing the -a flag instead of a URI, the OpenSplice manager is
instructed to terminate all Domain Services that are currently running on the
local node.

status [URI] — Prints the status of the Domain Service for the specified URI
(it looks for the environment variable OSPL_URI when no URI is explicitly
passed.) When a Domain with the specified URI cannot be found, it prints
nothing.
85
Deploying OpenSplice DDS�������	

3 Tools 3.4 mmstat: Memory Management Statistics

list — Lists all Domain Services by name (i.e. the name configured in the
OpenSplice/Domain/Name element of the config file). This behaviour is
similar to the status option, but then for all Domains that are currently running
on the local node.

There are a couple of other flags that can be used to display valuable information:
-v — prints the version number of the current OpenSplice release.
-h — prints help for all command-line options.
Note that the default behaviour of ospl without any command-line arguments is to
display help.

3.4 mmstat: Memory Management Statistics
Mmstat is a command-line tool that can display valuable information about the
shared memory statistics of an OpenSplice Domain (this is only applicable to the
Federated Deployment Mode, since the Single Process Deployment Mode does not
use shared memory). The Domain to which mmstat must attach can be passed as a
command-line parameter, and consists of a URI to the config file specifying the
Domain. When no URI is passed, mmstat will attach to the Domain specified in the
environment variable OSPL_URI.
Basically mmstat can run in four separate modes, which all display their status at
regular intervals. This interval time is by default set to 3 seconds, but can be
overruled by passing the -i flag followed by an interval value specified in
milliseconds. The following modes can be distinguished using the specified flags:

-m The memory statistics mode (default mode)
-M The memory statistics difference mode
-t The meta-object references mode
-T The meta-object references difference mode

Mmstat will keep on displaying an updated status after every interval until the q key
is pressed, or until the total number of iterations reaches the sample_count limit
that can be specified by passing the -s flag followed by the preferred number of
iterations. Intermediate status updates can be enforced by pressing the t key.
The following subsections will provide a more detailed description of the different
mmstat modes presented above.

3.4.1 The memory statistics mode
In the memory statistics mode mmstat basically displays some general shared
memory statistics that can help in correctly estimating the required size of the shared
memory database in the configuration file. The numbers that will be displayed in
this mode are:
86
Deploying OpenSplice DDS

�������	

3 Tools 3.4 mmstat: Memory Management Statistics

• The total amount of shared memory still available (i.e. currently not in use).
• the number of objects currently allocated in the shared memory.
• the amount of shared memory that is currently in use by the allocated objects.
• the worstcase amount of shared memory that has been in use so far.
• the amount of shared memory that is currently marked as reuasble. (Reusable

memory is memory that is conceptually available, but it might be fragmented in
small chunks that cannot be allocated in bigger chunks.)

The memory statistics mode is the default mode for mmstat, and it is selected when
no explicit mode selection argument is passed. It can also be selected explicitly by
passing the -m flag.

Figure 11 Typical mmstat view

3.4.2 The memory statistics difference mode
The memory statistics difference mode works very similarly to the memory
statistics mode, but instead of displaying the current values of each measurement it
displays the changes of each value relative to the previous measurement. This
provides a good overview of the dynamics of your shared memory, such as whether
it remains stable, whether it is rapidly being consumed/released, and so on.
87
Deploying OpenSplice DDS�������	

3 Tools 3.4 mmstat: Memory Management Statistics

Figure 12 Mmstat memory statistics difference mode

The numbers that will be displayed in this mode are:
• the difference in the amount of available shared memory relative to the previous

measurement.
• the difference in the number of objects that is allocated in the shared memory

relative to the previous measurement.
• the difference in the amount of shared memory that is in use by the allocated

objects relative to the previous measurement.
• the difference in the worstcase amount of shared memory that has been allocated

since the previous measurement. Notice that this value can only go up and so the
difference can never be negative.

The memory statistics difference mode can be selected by explicitly passing the -M
flag as a command-line parameter.

3.4.3 The meta-object references mode
In the meta-object references mode mmstat basically displays which objects are
currently populating the shared memory. For this purpose it will iterate through all
datatypes known to the Domain, and for each datatype it will display the following
information:
88
Deploying OpenSplice DDS

�������	

3 Tools 3.4 mmstat: Memory Management Statistics

Figure 13 Mmstat meta-object references mode

• the number of objects currently allocated for the indicated type.
• the memory allocation footprint of a single object of the indicated type.
• the combined size taken by all objects of the indicated type.
• The kind of object (e.g. class, collection, etc.).
• The kind of collection (when appropriate).
• The fully scoped typename.
In normal circumstances the reference list will be so long (only the bootstrap will
already inject hundreds of types into the Domain) that it will not fit on one screen.
For that reason there are several ways to restrict the number of items that are
displayed, by filtering out the non-interesting items:
• A filter can be specified by passing the -f flag, followed by a (partial) typename.

This restricts the list to the only those datatypes that match the filter.
• The maximum number of items that may be displayed can be specified by passing

the -n flag, followed by the maximum value.
This is especially useful when combined with another flag that determines the
order in which the items will be displayed. For example, when the items are sorted
by memory footprint, passing -n10 will only display the top ten datatypes that
have the biggest footprint.
89
Deploying OpenSplice DDS�������	

3 Tools 3.4 mmstat: Memory Management Statistics

The order of the items in the list can be controlled by passing the -o flag, followed
by a character specifying the ordering criterion. The following characters are
supported:
C — Sort by object Count (i.e. the number of allocated objects from the indicated

datatype).
S — Sort by object Size (i.e. the memory footprint of a single object from the

indicated datatype).
T — Sort by Total size (i.e. the combined memory footprint of all objects allocated

from the indicated datatype).

3.4.4 The meta-object references difference mode
The meta-object references difference mode is very similar to the meta-object
references mode, but instead of displaying the current values of each measurement it
displays the changes of each value relative to the previous measurement. This
provides a good overview of the dynamics of your shared memory, such as whether
the number of objects remains stable, whether it is rapidly increasing/decreasing,
and so on.
The fields that are displayed in this mode are similar to the fields displayed in the
meta-object references mode, except that the numbers displayed in the first and third
column are now specifying the changes relative to the previous measurement.
All the flags that are applicable to the meta-object references mode are also
applicable to the meta-object references difference mode, but keep in mind that
ordering (when specified) is now based on the absolute value of the difference
between the current and the previous measurement. This way big negative changes
will still be displayed at the top of the list.
90
Deploying OpenSplice DDS

�������	

3 Tools 3.4 mmstat: Memory Management Statistics

Figure 14 Mmstat meta-object references difference mode
91
Deploying OpenSplice DDS�������	

3 Tools 3.4 mmstat: Memory Management Statistics

92
Deploying OpenSplice DDS

�������	

CHAPTER

4 Service Configuration
4.1 Introduction

This chapter provides a more in-depth description of the OpenSplice DDS
configuration by describing the most important configuration parameters for all
available services. Each configuration parameter will be explained by means of an
extensive description together with the tabular summary that contains the following
information:
• Full path - Describes the location of the item within a complete configuration.

Because the configuration is in the XML format, an XPath expression is used to
point out the name and location of the configuration item.

• Format - Describes the format of the value of the configuration item.
• Dimension - Describes the unit for the configuration item (e.g. seconds or bytes).
• Default value - Describes the default value that is used by service when the

configuration item is not in the configuration.
• Valid values - Describes the valid values for the configuration item. This can be a

range or a set of values.
In case the configuration parameter is an XML attribute, the table also contains the
following information:
• Required - Describes whether the attribute must be specified explicitly or is

optional.
In case the configuration parameter is an XML element, the table also contains the
following information:
• Occurrences - Describes the range of the possible number of occurrences of the

element in the configuration by specifying the minimum and maximum number of
occurrences.

• Child-elements - Describes the child-elements supported by the current element.
• Required attributes - Describes the required attributes, i.e. the attributes that must

be specified inside the current element.
• Optional attributes - Describes the optional attributes, i.e. the attributes that may,

but do not need to be specified inside the current element.
93
 Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2 The Domain Service
The Domain Service is responsible for creating and initialising the DDS database
which is used by the administration to manage a specific DDS Domain on a
computing node. Without this administration, no other service or application is able
to participate in a DDS Domain. Once the administration has been initialised, the
Domain service starts the set of pluggable services. The lifecycle of the started
services is under control of the Domain service, which means that it will monitor the
health of all started services, take corrective actions if needed and stop the services
when it is terminated.
When a shutdown of the OpenSplice Domain service is requested, it will react by
announcing the shutdown using the shared administration. Applications will not be
able to use DDS functionality anymore and services are requested to terminate
elegantly. Once this has succeeded, the Domain service will destroy the shared
administration and finally terminate itself.
Please refer to section 1.4 on page 17 for notes about applications operating in
multiple domains.

Full path OpenSplice/Domain
Occurrences (min-max) 1 - 1
94
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.1 Element Id
This element specifies the domain Id of the instantiated DDS domain. If several
different DDS domains are required to run simultaneously, then they all need to
have their own unique domain Id.
NOTE: For maximum interoperability it is recommended that you only select a
domain Id from the range 0 < n < 230. The domain Id value is used by the DDSI2
service to derive values for the required network communiction endpoints, and
service reconfiguration is required to use domain Id values outside of this range.
Please also see section 9.6.1 of the Real-time Publish-Subscribe Wire Protocol DDS
Interoperability Wire Protocol specification (DDSI), v2.1, formal/2009-01-05 at
http://www.omg.org/spec/DDSI/2.1/ for further information.

Child-elements Element Id
Element Name
Element CPUAffinity
Element Role
Element Lease
Element ServiceTerminatePeriod
Element SingleProcess
Element Database
Element Service
Element Application
Element Listeners
Element BuiltinTopics
Element PriorityInheritance
Element Statistics
Element ReportPlugin
Element PartitionAccess
Element TopicAccess
Element ResourceLimits
Element Report
Element Daemon
Element GeneralWatchdog
Element UserClockService

Required attributes <none>
Optional attributes <none>

i

95
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.2 Element Name
This element specifies the name of the instantiated DDS domain. In general, it is
recommended to change this name to a name that uniquely identifies the domain.

4.2.3 Element CPUAffinity
This element specifies which CPUs OpenSplice should be constrained to run on. It
is currently only supported for VxWorks SMP kernel mode builds.
This element consists of a comma-separated list of CPU numbers that OpenSplice is
to have its CPU affinity set to.

Full path OpenSplice/Domain/Id
Format signed integer
Dimension n/a
Default value 1

Valid values 0 - maxInt (Recommended: 1 - 229)

Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Name
Format string
Dimension n/a
Default value OpenSplice<version>
Valid values any string
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
96
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.4 Element Role
Within a system and depending on the hosted application a Domain Service can
have a specific role and interaction with other Domain Services may depend on this
role.
The Role element is a user-defined string value that is communicated through the
system, the behavior of other Domain Services i.e. how they interact with a Domain
Service can be configured depend of the role by means of string matching
expressions. For example, a Domain Service could limit its communication with
other Domain Services by only accepting specific roles. (See also Section 4.4.1.6.2,
Attribute Scope, on page 226).

Full path OpenSplice/Domain/CPUAffinity
Format string
Dimension n/a
Default value “” (empty string)
Valid values Comma-separated list of CPU IDs
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Role
Format string
Dimension n/a
Default value DefaultRole
Valid values any string
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
97
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.5 Element Lease
The Lease parameter specifies the death detection time of the Domain Service. All
internal tasks performed by the Domain Service will periodically update their
liveliness; when one or more tasks fail to update its liveliness the Domain will take
action to either repair the failing functionality, continue in a degraded mode, or halt,
depending on the configured desired behaviour.

4.2.5.1 Element ExpiryTime
This element specifies the interval in which services have to announce their
liveliness.
Every OpenSplice DDS service, including the Domain Service itself, has to
announce its liveliness regularly. This allows corrective actions to be taken when
one of the services becomes non-responsive. This element specifies the required
interval. Decreasing the interval decreases the time in which non-responsiveness of
a service is detected, but leads to more processing. Increasing it has the opposite
effect.

Full path OpenSplice/Domain/Lease
Occurrences (min-max) 0 - 1
Child-elements Element ExpiryTime
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Lease/ExpiryTime
Format float
Dimension seconds
Default value 10.0
Valid values 0.2 - maxFloat
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute update_factor
Optional attributes <none>
98
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.5.1.1 Attribute update_factor
In case of a temporary high CPU load, the scheduling behaviour of the operating
system might affect the capability of a service to assert its liveliness ‘on time’. The
update_factor attribute introduces some elasticity in this mechanism by making the
services assert their liveliness more often than required by the ExpiryTime. Services
will report their liveliness every ExpiryTime multiplied by this update_factor.

4.2.6 Element ServiceTerminatePeriod
This element specifies the amount of time the Domain Service, when instructed to
terminate, should wait for the other configured Services to terminate. When this
element is configured to '0' the Domain service will terminate without any wait time
at all. Be aware that without any wait time the deamon will use a hard kill on any
lingering service that can not terminate fast enough. This may prevent graceful
termination and thus leave applications that are still attached to the DDS domain in
an undefined state. Consequently the '0' value should only be used when there is
some form of process management on top of OpenSplice DDS.

Full path OpenSplice/Domain/Lease/ExpiryTime[@update_factor]
Format float
Dimension n/a
Default value 0.2
Valid values 0.01 - 1.0
Required yes

Full path OpenSplice/Domain/ServiceTerminatePeriod
Format float
Dimension seconds
Default value 10.0
Valid values 0.0 - 60.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
99
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.7 Element SingleProcess
This element specifies whether the OpenSplice Domain and other OpenSplice
services and applications are intended to be all deployed within the same process,
known in OpenSplice as a single process.
Please note that the choice to use the single process deployment also implies the use
of heap memory for the OpenSplice database management instead of shared
memory that would be used otherwise. The heap memory is limited by the
Operating System, so the Database element under Domain does not take effect
when SingleProcess has a value of True.
There are two ways in which to deploy an OpenSplice application as a single
process:
Single Process Application - The user starts a DDS application as a new process. In

this case, the DDS create_participant operation will implicitly start the
OpenSplice Domain Service as a thread in the existing application process. The
OpenSplice Domain Service will then also implicitly start all services specified
in the configuration as threads within the same process.

Single Process Application Cluster - This provides the option to co-locate multiple
DDS applications into a single process. This can be done by creating application
libraries rather than application executables that can be ‘linked’ into the single
process in a similar way to how the DDS middleware services are linked into
the single process. The applications that are created as libraries must be
described using the Domain/Application (see section 4.2.10 on page 111)
configuration attribute. These are started as threads within the existing process
by the Domain Service after all the DDS services that are specified have been
started as threads.

Please note that the Application elements (see section 4.2.10) specified under
Domain will only take effect for either mode when this SingleProcess attribute
has a value of True.

Full path OpenSplice/Domain/SingleProcess
Format enumeration
Dimension n/a
Default value False

Valid values True, False

Occurrences (min-max) 0 - 1
100
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.8 Element Database
The Database element contains information about the nodal administration (shared
memory) to be used.
Please note that the Database element is only applicable in the shared memory
deployment mode, i.e. when the Element SingleProcess is set to False, or is not
specified.

4.2.8.1 Element Size
This element specifies the size of the shared memory segment holding the database.
Change this value if your system requires more memory than the default. Please
note that the operating system must be configured to support the requested size. On
most platforms you need ‘root’ or ‘administrator’ privileges to set large sizes.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Database
Occurrences (min-max) 0 - 1
Child-elements Element Size

Element Threshold
Element Address
Element Locking

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Database/Size
Format unsigned integer, human-readable
Dimension bytes
Default value 10485760
Valid values 0 – maxInt
Occurrences (min-max) 1 - 1
101
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.8.2 Element Threshold
This element specifies the threshold size used by OpenSplice DDS. Whenever there
is less free shared memory than indicated by the threshold then no new allocations
will be allowed within shared memory. Services are allowed to continue allocating
shared memory until less than 50% of the threshold value is available.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.
It is strongly discouraged to configure a threshold value of less than the default
value, but for some embedded systems it might be needed as only limited memory is
available.

4.2.8.3 Element Address
This element specifies the start address where the nodal shared administration is
mapped into the virtual memory of each process that attaches to the current Domain.
The possible values are platform dependent.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Database/Threshold
Format unsigned integer, human-readable
Dimension bytes
Default value 1048576
Valid values 0 – maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Database/Address
Format (hexadecimal) memory address
Dimension shared memory address
102
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

Change this value if the default address is already in use, for example by another
Domain Service or another product.

4.2.8.4 Element Locking
This element specifies the locking policy of the Database, indicating whether to lock
pages in physical memory or not.
With the virtual memory architecture, the operating system decides when to swap
memory pages from internal memory to disc. This results in execution delays for the
corresponding code because it has to be paged back into main memory. The element
Locking can be used to avoid such swapping for the shared memory where the
database resides. The user needs the appropriate privileges from the underlying
operating system to be able to use this option.
The possible values are:
• True: lock the pages in memory.
• False: don't lock the pages in memory.
• Default: use the platform-dependent default value.

Default value 0x20000000 (Linux2.6 on x86)
0x140000000 (Linux2.6 on x86_64)
0x40000000 (Windows on x86)
0x40000000 (Windows on x86_64)
0xA0000000 (Solaris on SPARC)
0xA0000000 (AIX5.3 on POWER5+)
0x0 (VxWorks 5.5.1 on PowerPC604)
0x60000000 (VxWorks 6.x on PowerPC604)
0x20000000 (Integrity on mvme5100)

Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Database/Locking
Format enumeration
Dimension n/a
103
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.9 Element Service
The Domain Service is responsible for starting, monitoring and stopping the
pluggable services. One Service element must be specified for every service that
needs to be started by the Domain Service.
• When run in shared memory mode, the Domain Service will start each service as a

new process that will interface directly with the shared memory for DDS
communication.

• When run in single process mode, the Domain Service will start each service as a
new thread within the existing process that will have access to the heap memory
for the DDS communication.

4.2.9.1 Attribute name
This attribute specifies the name by which the the corresponding service is
identified in the rest of the configuration file.

Default value Default
Valid values True, False, Default
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service
Occurrences (min-max) 1 - *
Child-elements Element Command

Element MemoryPoolSize
Element HeapSize
Element StackSize
Element Configuration
Element Scheduling
Element Locking
Element FailureAction

Required attributes Attribute name
Optional attributes Attribute enabled
104
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

In the OpenSplice DDS configuration file, services and their settings are identified
by a name. When the Domain Service starts a particular service, its corresponding
name is passed. The service in question uses this name in order to find its own
configuration settings in the rest of the configuration file. The name specified here
must match the name attribute of the main element of the corresponding service.

4.2.9.2 Attribute enabled
This attribute indicates whether the service is actually started or not.

Toggling a service between enabled and disabled is a quick alternative for
commenting out the corresponding lines in the configuration file.

4.2.9.3 Element Command
This element specifies the command to be executed in order to start the service.
OpenSplice DDS comes with a set of pluggable services.
In shared memory mode, Command element specifies the name of the actual service
executable (possibly including its path, but always including its extension, e.g.
‘.exe’ on the Windows platform). When no path is included, the Domain Service
will search the PATH environment variable for the corresponding executable. Once
located, it will be started as a separate process.
In single process mode, Command is the name of the entry point function to be
invoked and the name of the shared library to be dynamically loaded into the
process. The signature of the entry point function is the same as argc/argv usually

Full path OpenSplice/Domain/Service[@name]
Format string
Dimension n/a
Default value durability
Valid values any string
Required yes

Full path OpenSplice/Domain/Service[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no
105
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

seen with main. The OpenSplice services are implemented in such a way that the
entry point name matches that of the shared library, so (for example) specifying
‘durability’ is all that is required.

4.2.9.4 Element MemoryPoolSize
CAUTION: This element should only be used on the GHS Integrity platform.
This element maps directly into the integrate file for the address space for this
service. Consult the GHS Integrate documentation for further information on this
setting. Valid values are decimal or hexadecimal numbers and they express the
number of bytes. The default setting for this element is dependent on the service for
which it is configured.

Full path OpenSplice/Domain/Service/Command
Format string
Dimension executable file or entry point / shared library
Default value durability
Valid values The name of a service executable or entry point /

shared library
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service/MemoryPoolSize
Format string
Dimension decimal or hexadecimal number of bytes.
Default value 0xa00000 for spliced

0x280000 for durability
0x280000 for networking
0x100000 for cmsoap

Valid values dependent on underlying platform
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
106
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.9.5 Element HeapSize
CAUTION: This element should only be used on the GHS Integrity platform.
This element maps directly into the integrate file for the address space for this
service. Consult the GHS Integrate documentation for further information on this
setting. Valid values are decimal or hexadecimal numbers and they express the
number of bytes. The default setting for this element is dependent on the service for
which it is configured.

4.2.9.6 Element StackSize
CAUTION: This element should only be used on the GHS Integrity platform.
This element maps directly into the integrate file for the address space for this
service. Consult the GHS Integrate documentation for further information on this
setting. Valid values are decimal or hexadecimal numbers and they express the
number of bytes. The default setting for this element is dependent on the service for
which it is configured.

Full path OpenSplice/Domain/Service/MemoryPoolSize
Format string
Dimension decimal or hexadecimal number of bytes.
Default value 0x800000 for spliced

0x240000 for durability
0x240000 for networking
0x200000 for cmsoap

Valid values dependent on underlying platform
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service/StackSize
Format string
Dimension decimal or hexadecimal number of bytes.
107
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.9.7 Element Configuration
This element allows overriding of the default URI (specified in the OSPL_URI
environment variable, or passed explicitly as command-line parameter to the ospl
executable) with the configuration resource specified here.
When the Domain Service is started by the ospl executbale, by default it passes on
its own URI to the services that it starts. This is valid when the configuration of the
service is located in the same resource file as the configuration of the Domain
Service itself. (This is a convenient situation in most cases).
If the configuration of the current service is located in a separate resource file, a
separate URI identifying that particular resource file must be specified in this
element.

4.2.9.8 Element Scheduling
This element specifies the scheduling parameters used to control the current
Service.

Default value 0x10000 for spliced
0x10000 for durability
0x10000 for networking
0x10000 for cmsoap

Valid values dependent on underlying platform
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service/Configuration
Format string
Dimension URI
Default value ${OSPL_URI}
Valid values Any URI to a valid resource file.
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
108
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.9.8.1 Element Class
This element specifies the thread scheduling class that the Domain Service will
assign to the current Service when it is started. The user may need the appropriate
privileges from the underlying operating system to be able to assign some of the
privileged scheduling classes.

4.2.9.8.2 Element Priority
This element specifies the thread priority that the Domain Service will assign to the
current Service when it is started. Only priorities that are supported by the
underlying operating system can be assigned to this element. The user may need
special privileges from the underlying operating system to be able to assign some of
the privileged priorities.

Full path OpenSplice/Domain/Service/Scheduling
Occurrences (min-max) 0 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service/Scheduling/Class
Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Service/Scheduling/Priority
Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
109
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.9.8.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.2.9.9 Element Locking
This element specifies the locking policy of the current Service process, indicating
whether pages should be locked in physical memory or not.
On platforms with a virtual memory architecture, the operating system decides
when to swap memory pages from internal memory to disk. This results in
execution delays for the corresponding code because it has to be paged back into
main memory. The element Locking can be used to avoid such swapping for the
current Service. The user needs the appropriate privileges from the underlying
operating system to be able to use this option.

Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/Domain/Service/Scheduling/Priority[
@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/Domain/Service/Locking
Format boolean
Dimension n/a
Default value depends on operating system
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
110
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.9.10 Element FailureAction
This element specifies what action to take at the moment that the service seems to
have become non-responsive.
Each service reports its liveliness regularly using the shared administration. If the
service fails to do so, the Domain Service will assume the service has become
non-responsive. This element determines what action is taken by the Domain
Service in case this happens.
The following actions are available:
• skip: Ignore the non-responsiveness and continue.
• kill: End the service process by force.
• restart: End the service process by force and restart it.
• systemhalt: End all OpenSplice services including the Domain Service (for the

current DDS Domain on this computing node).

4.2.10 Element Application
When in single process mode, the Domain service can deploy DDS applications by
dynamically loading application shared libraries and starting threads within the
existing process.
A user can add a multiple Application elements to the configuration when they want
to ‘cluster’ multiple DDS applications within an OpenSplice DDS single process.
The entry point and shared library for each Application can be specified by using the
Command and Library elements that are described below.
Note that Applications only take effect when the SingleProcess configuration is
enabled (see 4.2.7, Element SingleProcess, on page 100).

Full path OpenSplice/Domain/Service/FailureAction
Format enumeration
Dimension n/a
Default value skip
Valid values skip, kill, restart, systemhalt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
111
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.10.1 Attribute name
This attribute assigns a configuration label to the application, but it is of no further
use; it can have any valid string value.

4.2.10.2 Attribute enabled
This attribute indicates whether the application is actually started or not.

Toggling an application between enabled and disabled is a quick alternative for
commenting out the corresponding lines in the configuration file.

4.2.10.3 Element Command
Command is the name of both the entry point function to be invoked and of the
shared library to be dynamically loaded into the process. The signature of the entry
point function is the same as argc/argv usually seen with main.

Full path OpenSplice/Domain/Application
Occurrences (min-max) 0 - *
Child-elements Element Command

Element Library
Element Arguments

Required attributes Attribute name
Optional attributes Attribute enabled

Full path OpenSplice/Domain/Application[@name]
Format string
Dimension n/a
Default value “” (empty string)
Valid values any string
Required yes

Full path OpenSplice/Domain/Application[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no
112
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

For example, if Command is ‘HelloWorld’, then OpenSplice DDS will attempt to
load libHelloWorld.so (on Unix) or HelloWorld.dll (on Windows) into the
existing process and then invoke the ‘HelloWorld’ entry point to start that DDS
application.
If the name of the shared library does not have the same name as the entry point, the
user can override the name of the library by using the application’s Library element
(see Section 4.2.10.4, Element Library). The shared library is located by way of the
current working directory, or via LD_LIBRARY_PATH (on Unix systems) or PATH
(on Windows systems).
Note that this has the same meaning as the Service/Command element when in the
single process mode of operation.

4.2.10.4 Element Library
This optional attribute allows the user to override the name of the shared library if it
is different from the name of the entry point specified by Command (see also
Section 4.2.10.3, Element Command).
The shared library is located by way of the current working directory, or via
LD_LIBRARY_PATH (on Unix systems) or PATH (on Windows systems).

Full path OpenSplice/Domain/Application/Command
Format string
Dimension executable file
Default value durability
Valid values The name of a service executable.
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Application/Library
Format string
Dimension Library file
Default value “” (empty string)
Valid values the name of a library file
Occurrences (min-max) 0 - 1
113
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.10.5 Element Arguments
This optional element enables the user to specify arguments to be passed to the DDS
application’s entry point when it is invoked. For example, if Command is
"HelloWorld" and Arguments is "arg1 arg2", OpenSplice will invoke the
HelloWorld function with the argc = 3 and argv = {"HelloWorld",
"arg1", "arg2"}.

4.2.11 Element Listeners
This element specifies policies for the thread that services the listeners that the
application specifies on the API-level.

4.2.11.1 Element StackSize
This element specifies stack size of the listener thread.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Application/Arguments
Format string
Dimension n/a
Default value <none>
Valid values any string
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Listeners
Occurrences (min-max) 0 - 1
Child-elements Element StackSize
Required attributes <none>
Optional attributes <none>
114
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

Newer versions of JDK (at least 1.6u43 and 1.6u45) run out of stack space on 64-bit
platforms. Using a larger default StackSize would impact all non-Java
applications too, and is therefore undesirable. Try increasing StackSize to
128000 bytes if you experience problems with using listeners from Java on 64-bit
platforms.

4.2.12 Element BuiltinTopics
This element specifies the granularity of the builtin topics.

4.2.12.1 Attribute enabled
This attribute enables or disables the publication of builtin topics for the existence
of individual Participants/DataWriters/DataReaders. The existence of Topics will
always be communicated by means of built-in topics, regardless of the value
specified here.

Full path OpenSplice/Domain/Service/Listeners/StackSize
Format unsigned integer
Dimension bytes
Default value 64000
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/BuiltinTopics
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute enabled
Optional attributes <none>

Full path OpenSplice/Domain/BuiltinTopics[@enabled]
Format boolean
Dimension n/a
115
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.13 Element PriorityInheritance
This element specifies the usage on Priority Inheritance on mutexes in this domain.

4.2.13.1 Attribute enabled
This attribute enables or disables priority inheritance for mutexes, if that is
supported by the underlying Operating System.

4.2.14 Element Statistics
This element specifies the policies regarding statistics. Various statistics can be
generated by OpenSplice DDS to help you analyze and tune application behaviour
during application development. Since this introduces extra overhead, it is generally
turned off in a runtime system.

Default value true
Valid values true, false
Required true

Full path OpenSplice/Domain/PriorityInheritance
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute enabled
Optional attributes <none>

Full path OpenSplice/Domain/PriorityInheritance[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/Domain/Statistics
Occurrences (min-max) 0 - 1
116
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.14.1 Element Category
This element specifies the properties for a particular category of statistics.

4.2.14.1.1 Attribute name
This attribute specifies the name of a particular category of statistics.

4.2.14.1.2 Attribute enable
This attribute enables or disables the generation of statistics for the specified
category.

Child-elements Element Category
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Statistics/Category
Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes Attribute name
Optional attributes Attribute enable

Full path OpenSplice/Domain/Statistics/Category[@name]
Format string
Dimension name of a statistics category
Default value reader
Valid values durability, reader, writer, networking
Required true

Full path OpenSplice/Domain/Statistics/Category[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false
117
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.15 Element ReportPlugin
This element allows the user to plugin a custom report facility to be used by the
domain. The Domain Service is responsible for registering and unregistering any
report plugins. All services and applications within the domain will use any
registered report plugins.

4.2.15.1 Element Library
This element specifies the library to be loaded.

4.2.15.1.1 Attribute file_name
This attribute specifies the name of the library to be loaded. The attribute is
required, if no file name is specified or a name is specified but the library cannot be
loaded an error message is generated; the service will not attempt to look up any
other elements and the report plugin details will not be registered.

Full path OpenSplice/Domain/ReportPlugin
Occurrences (min-max) 0 – 10
Child-elements Element Library

Element Initialize
Element Report
Element Finalize
Element SuppressDefaultLogs

Required attributes <none>
Optional Attributes <none>

Full path OpenSplice/Domain/ReportPlugin/Library
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute file_name
Optional attributes <none>

Full path OpenSplice/Domain/ReportPlugin/
Library[@file_name]

Format String
Dimension N/A
118
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.15.2 Element Initialize
This element specifies the library symbol that will be assigned to the report
Initialize operation. This operation will be invoked initially after loading the library
to perform initialization of the report facility if needed.

4.2.15.2.1 Attribute symbol_name
This attribute specifies the name of the function to be called to initialize the report
plugin. The symbol_name is required, if it is not specified or cannot be resolved an
error message will be generated and the service will not attempt to resolve other
symbol_names for the report plugin.
The implementation of this function must have the following signature:

int symbol_name (const char *argument, void **context)

The result value is used to return the status of the call. If 0 then the operation was
successful. If not 0 then there was an error and details of the error and the result
value are reported to the OpenSplice DDS default report service.
The context parameter is an out reference that can be set to plugin-specific data that
will subsequently be passed to any of the other plugin functions. The value of the
parameter is meaningless to the service.

Default value None
Valid values Any valid string
Required Yes

Full path OpenSplice/Domain/ReportPlugin/Initialize
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute symbol_name
Optional attributes Attribute argument

Full path OpenSplice/Domain/ReportPlugin/
Initialize[@symbol_name]

Format String
Dimension N/A
Default value None
Valid values Any valid string
Required Yes
119
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.15.2.2 Attribute argument
The argument attribute is a string value that is passed to the function specified by the
symbol_name. The string value has no meaning to the service and is used to pass
any context-specific information that may be required. The argument is optional; if
it is not provided then a NULL pointer is passed to the initalize function.

4.2.15.3 Element Report
This element specifies the library symbol that will be assigned to the report Report
operation. This operation will be invoked on all reports performed by the DDS
service.

4.2.15.3.1 Attribute symbol_name
This attribute specifies the name of the function to be called to pass report data to
the report plugin. The symbol_name is required, if it is not specified or cannot be
resolved an error message will be generated and the service will not attempt to
resolve other symbol_names for the report plugin.
The implementation of this function must have the following signature:

int symbol_name (void *context, const char *report)

The result value is used to return the status of the call. If 0 then the operation was
successful. If not 0 then there was an error and details of the error and the result
value are reported to the OpenSplice DDS default report service.
The context parameter is a reference to the plugin-specific data retrieved from the
initialize operation.

Full path OpenSplice/Domain/ReportPlugin/
Initialize[@argument]

Format String
Dimension N/A
Default value None
Valid values Any valid string
Required No

Full path OpenSplice/Domain/ReportPlugin/Report
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute symbol_name
Optional attributes <none>
120
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

The report parameter is an XML string representation of the report data.
Below is an example of the mapping that the XML string representation will use:

<WARNING>
<DESCRIPTION>The object “my_topic” not

found</DESCRIPTION>
<CONTEXT>c_base::resolve</CONTEXT>
<FILE>c_base.c</FILE>
<LINE>1234</LINE>
<CODE>0</CODE>

</WARNING>

4.2.15.4 Element TypedReport
This element can be specified additionally or as an alternative to element Report
(see Section 4.2.15.3, Element Report, on page 120). It specifies a a library symbol
for a fully defined and less generic report operation that will be called by the plug-in
framework for all loggable events.

4.2.15.4.1 Attribute symbol_name
This attribute specifies the name of the function to be called to pass report data to
the report plugin.
The implementation of this function must have the following signature:

int symbol_name (void *context, os_reportEvent report);

where os_reportEvent is a pointer to a struct holding the data that can be logged.

Full path OpenSplice/Domain/ReportPlugin/
Report[@symbol_name]

Format String
Dimension N/A
Default value None
Valid values Any valid string
Required Yes

Full path OpenSplice/Domain/ReportPlugin/TypedReport
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute symbol_name
Optional attributes <none>
121
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

T h e d e f i n i t i o n o f t h i s l o g e v e n t s t r uc t c a n be found i n t he f i l e
$OSPL_HOME/include/sys/os_report.h and this file should be consulted for
further details. This header file should be included (#include) into plug-in source
code and plug-ins should then be linked against the library libddsos.so /
ddsos.lib if a TypedReport report operation is to be used. As with the Report
element, the context parameter is a reference to the plugin-specific data retrieved
from the initialize operation.
An example of implementing a plug-in with this form of log function to access this
da t a c an be found i n t he d i r ec to ry
$OSPL_HOME/examples/utilities/logging/log4cplugin.

4.2.15.5 Element Finalize
This element specifies the library symbol that will be assigned to the report Finalize
operation. This operation will be invoked upon process termination to perform
de-initialization of the report facility if needed.

4.2.15.5.1 Attribute symbol_name
This attribute specifies the name of the function to be called to finalize the report
plugin, when the domain unregisters any registered plugin. The symbol_name is
required. If it is not specified or cannot be resolved an error message will be
generated and the service will not attempt to resolve other symbol_names for the
report plugin.
The implementation of this function must have the following signature:

int symbol_name (void *context)

Full path OpenSplice/Domain/ReportPlugin/
TypedReport[@symbol_name]

Format String
Dimension N/A
Default value None
Valid values Any valid string
Required Yes

Full path OpenSplice/Domain/ReportPlugin/Finalize
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute symbol_name
Optional attributes <none>
122
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

The result value is used to return the status of the call. If 0 then the operation was
successful. If not 0 then there was an error and details of the error and the result
value are reported to the OpenSplice DDS default report service.
The context parameter is a reference to the plugin-specific data retrieved from the
initialize operation.

4.2.15.6 Element SuppressDefaultLogs
This attribute specifies whether the default logs generated by the domain are to be
suppressed or not. The default value is False. If the value is set to True then
ospl-error and ospl-info logs normally generated by the domain will not be
generated.

4.2.16 Element PartitionAccess
This element is used to configure the partition access rights. By default all partitions
have read and write access, which means that subscribers and publishers may be
created for all partitions. However by changing the access level of specific partitions

Full path OpenSplice/Domain/ReportPlugin/
Report[@symbol_name]

Format String
Dimension N/A
Default value None
Valid values Any valid string
Required Yes

Full path OpenSplice/Domain/ReportPlugin/
SuppressDefaultLogs

Format boolean
Dimension n/a
Default value False
Valid value True, False
Occurrences (min-max) 0 – 1
Child-elements <none>
Required attributes <none>
Optional Attributes <none>
123
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

it is possible to prevent publishers and/or subscribers from attaching to these
partitions. The access rights is Domain Service specific, each Domain Service can
have its own policy.
The PartitionAccess element facilitates the configuration of such behavior. This
is done by allowing the definition of a partition expression along with a specific
access mode for the matched partitions. The PartitionAccess element resides as
a child element within the Domain element. The exact definition of the
PartitionAccess element is as follows:

An example demonstrates the usage of this element:
<OpenSplice>
 <Domain>
 <PartitionAccess partition_expression=

”/remote/*” access_mode=”readwrite”/>
 </Domain>
</OpenSplice>

4.2.16.1 Attribute partition_expression
This attribute identifies an expression that specifies the partitions for which access is
being defined. The expression may use wildcards (i.e. the ‘*’ and ‘?’ tokens) to
indicates multiple partitions that match the expression.

Full path OpenSplice/Domain/PartitionAccess
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute partition_expression

Attribute access_mode
Optional attributes <none>

Full path OpenSplice/Domain/PartitionAccess/
partition_expression

Format string
Dimension n.a.
Default value *

Valid values Any string of format [A..Z,a..z,0..9,_,/,*,?]*
Required true
124
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.16.2 Attribute access_mode
This attribute identifies the access level for partitions specified by the
partition_expression attribute. The following values are allowed:
read Indicates domain participants can only read from this partition
write Indicates domain participants can only write to this partition
readwrite Indicates domain participants can read from and write to

this partition
none Indicates that domain participants have no access on

partitions matching the partition_expression.
When multiple expressions overlap each other, the following rules are applied:

4.2.17 Element TopicAccess
This element is used to configure the topic access rights. By default all topics have
read and write access (built-in topics have a default access mode of read), which
means that datareaders and datawriters may be created for all topics. However by
changing the access level of specific topics it is possible to prevent datawriters
and/or datareaders from being created for these topics. The access rights is Domain
Service specific, each Domain Service can have its own policy.

Access mode 1 Access mode 2 Resulting access mode
read write readwrite

read readwrite readwrite

read none none

write readwrite readwrite

write none none

readwrite none none

Full path OpenSplice/Domain/PartitionAccess/access_mode
Format string
Dimension n.a.
Default value readwrite
Valid values read, write, readwrite, none
Required true
125
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

The TopicAccess element facilitates the configuration of such behavior. This is
done by allowing the definition of a topic expression along with a specific access
mode for the matched topics.
The TopicAccess element resides as a child element within the Domain element.
The exact definition of the TopicAccess element is as follows:

An example demonstrates the usage of this element:
<OpenSplice>
 <Domain>
 <TopicAccess topic_expression=

”/remote/*” access_mode=”read”/>
 </Domain>
</OpenSplice>

4.2.17.1 Attribute topic_expression
This attribute identifies an expression that specifies the topics for which access is
being defined. The topic may use wildcards (i.e. the ‘*’ and ‘?’ tokens) to indicate
multiple topics that match the expression.

4.2.17.2 Attribute access_mode
This a t t r ibu te iden t i f i es the access l eve l fo r top ics def ined by the
topic_expression attribute. The following values are allowed:
read Indicates that domain participants have only read access

on Topics matching the topic_expression.

Full path OpenSplice/Domain/TopicAccess
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute topic_expression

Attribute access_mode
Optional attributes <none>

Full path OpenSplice/Domain/TopicAccess/topic_expression
Format string
Dimension n.a.
Default value *

Valid values Any string
Required true
126
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

write Indicates that domain participants have only write access
on Topics matching the topic_expression.

readwrite Indicates that domain participants have read and write
access on Topics matching the topic_expression.

none Indicates that domain participants have no access to
Topics matching the topic_expression.

When multiple expressions overlap each other, the following rules are applied:

4.2.18 Element ResourceLimits
This configuration tag allows for the specification of certain characteristics of
resource limits that will be applied throughout the domain.

Access mode 1 Access mode 2 Resulting access mode
read write readwrite

read readwrite readwrite

read none none

write readwrite readwrite

write none none

readwrite none none

Full path OpenSplice/Domain/TopicAccess/access_mode
Format string
Dimension n.a.
Default value readwrite
Valid values read, write, readwrite, none
Required true

Full path OpenSplice/Domain/ResourceLimits
Occurrences (min-max) 0 - 1
Child-elements Element MaxSamples

Element MaxInstances
Element MaxSamplesPerInstance

Required attributes <none>
Optional attributes <none>
127
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.18.1 Element MaxSamples
This configuration tag allows for the specification of certain characteristics of the
maximum samples resource limit that will be applied throughout the domain.

4.2.18.1.1 Element WarnAt
This element specifies the number of samples that, once reached, will result in a
warning message printed in the info log. This is to allow the detection of excessive
use of resources within the domain more easily.

4.2.18.2 Element MaxInstances
This configuration tag allows for the specification of certain characteristics of the
maximum instances resource limit that will be applied throughout the domain

Full path OpenSplice/Domain/ResourceLimits/MaxSamples
Occurrences (min-max) 0 - 1
Child-elements Element WarnAt
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/ResourceLimits/MaxSamples/
WarnAt

Format unsigned integer
Dimension n.a.
Default value 5000
Valid values 1-maxInt
Occurrences (min-max) 0 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/ResourceLimits/MaxInstances
Occurrences (min-max) 0 - 1
Child-elements Element WarnAt
Required attributes <none>
Optional attributes <none>
128
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.18.2.1 Element WarnAt
This element specifies the number of instances that, once reached, will result in a
warning message printed in the info log. This is to allow the detection of excessive
use of resources within the domain more easily.

4.2.18.3 Element MaxSamplesPerInstance
This configuration tag allows for the specification of certain characteristics of the
maximum samples resource limit that will be applied throughout the domain.

4.2.18.3.1 Element WarnAt
This element specifies the number of samples per instance that, once reached, will
result in a warning message printed in the info log. This is to allow the detection of
excessive use of resources within the domain more easily.

Full path OpenSplice/Domain/ResourceLimits/MaxInstances/
WarnAt

Format unsigned integer
Dimension n.a.
Default value 5000
Valid values 1-maxInt
Occurrences (min-max) 0 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/ResourceLimits/
MaxSamplesPerInstance

Occurrences (min-max) 0 - 1
Child-elements Element WarnAt
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/ResourceLimits/
MaxSamplesPerInstance/WarnAt

Format unsigned integer
Dimension n.a.
129
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.19 Element Report
The Report element controls some aspects of the OpenSplice domain logging
functionality.

4.2.19.1 Attribute append
This attribute determines whether logging for this domain should continue to
append to the previous error and info log files when the domain is (re)started or
whether the previous file should be deleted and fresh ones created.

4.2.19.2 Attribute verbosity
This attribute determines what level of logging should be in effect for this domain.
The levels or logging verbosity are:

0 DEBUG

Default value 5000
Valid values 1-maxInt
Occurrences (min-max) 0 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Report
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute append

Attribute verbosity

Full path OpenSplice/Domain/Report[@append]
Format string
Dimension n/a
Default value true

Valid values 0/no/false or 1/yes/true
(case-insensitive)

Required no
130
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

1 INFO
2 WARNING
3 API_INFO
4 ERROR
5 CRITICAL
6 FATAL
7 REPAIRED
8 NONE

The level specified as this attribute is the lowest level that will be emitted to the
logs. All logging can be suppressed by specifying the value 8 or NONE.

4.2.20 Element Daemon
Every domain is controlled by exactly one daemon: the Splice Daemon. The Splice
D a e m o n c o n f i g u r a t i o n e x pe c t s a r o o t e l e m e n t n a m e d
OpenSplice/Domain/Daemon. Within this root element, the Splice Daemon will
look for several child elements. Each of these child elements is listed and explained
in the following sections.

Full path OpenSplice/Domain/Report[@verbosity]
Format integer or string
Dimension n/a
Default value INFO or 1

Valid values integer 0 - 8
or
DEBUG, INFO, WARNING, API_INFO, ERROR,
CRITICAL, FATAL, REPAIRED, NONE
(case-insensitive)

Required no

Full path OpenSplice/Domain/Daemon
Occurrences (min-max) 0 - 1
131
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.1 Element Locking
This element specifies the locking policy for the Splice Deamon process, indicating
whether its pages should be locked in physical memory or not.
On platforms with a virtual memory architecture, the operating system decides
when to swap memory pages from internal memory to disk. This results in
execution delays for the corresponding code because it has to be paged back into
main memory. The element Locking can be used to avoid such swapping for the
Splice Daemon. The user needs the appropriate privileges from the underlying
operating system to be able to use this option.

Child-elements Element Locking
Element KernelManager
Element GarbageCollector
Element ResendManager
Element Watchdog
Element Heartbeat

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Locking
Format boolean
Dimension n/a
Default value false
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
132
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.2 Element KernelManager
The Kernel Manager monitors Builtin Topic on status changes of DataWriters and
inconsistencies between Topics and QoS policies, and it will notify all participants
interested in any of these events, i.e. it updates status fields and wakeup blocking
waitset and listener threads.
Controlling the scheduling behaviour of the Kernel Manager will therefore infuence
the reactivity on detecting events, but it will not infuence the event handling itself as
this is the responsibility of the participants waitset or listener thread.
Note that the Kernel Manager has no or limited value when Builtin Topics are
disabled.

4.2.20.2.1 Element Scheduling
This element specifies the scheduling policies used to control the KernelManager
thread.

4.2.20.2.1.1 Element Class
This element specifies the thread scheduling class that will be used by the
KernelManager thread. The user may need the appropriate privileges from the
underlying operating system to be able to assign some of the privileged scheduling
classes.

Full path OpenSplice/Domain/Daemon/KernelManager
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/KernelManager/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
133
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.2.1.2 Element Priority
This element specifies the thread priority that will be used by the KernelManager
thread. Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.2.20.2.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/Domain/Daemon/KernelManager/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/KernelManager/
Scheduling/Priority

Format integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
134
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.3 Element GarbageCollector
This element specifies the behaviour of the GarbageCollector.
The Garbage Collector is a safety mechanism and is responsible for reclaiming
resources and correcting communication statusses in case an application or a remote
Domain Service does not terminate properly or communication fails.

4.2.20.3.1 Element Scheduling
This element specifies the scheduling policies used to control the GarbageCollector
thread.

Full path OpenSplice/Domain/Daemon/KernelManager/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/Domain/Daemon/GarbageCollector
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/GarbageCollector/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
135
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.3.1.1 Element Class
This element specifies the thread scheduling class that will be used by the
GarbageCollector thread. The user may need the appropriate privileges from the
underlying operating system to be able to assign some of the privileged scheduling
classes.

4.2.20.3.1.2 Element Priority
This element specifies the thread priority that will be used by the GarbageCollector
thread. Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

Full path OpenSplice/Domain/Daemon/GarbageCollector/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/GarbageCollector/
Scheduling/Priority

Format integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
136
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.3.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.2.20.4 Element ResendManager
The Domain Service has a resend manager that is responsible for resending builtin
Topic data that has not been sent successfully on the first attempt (for example,
because of temporarily unavailable resources, such as when there is no space in the
network send queue due to a temporary overload). In such a situation the data will
be stored in the DataWriters history and the resend manager will periodically try to
resend the data until it succeeds.

4.2.20.4.1 Element Scheduling
This element specifies the type of operating system scheduling class will be used by
the thread that does local resends for the built-in participant.

Full path OpenSplice/Domain/Daemon/GarbageCollector/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/Domain/Daemon/ResendManager
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/ResendManager/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
137
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.4.1.1 Element Class
This element specifies the thread scheduling class that will be used by the
ResendManager thread. The user may need the appropriate privileges from the
underlying operating system to be able to assign some of the privileged scheduling
classes.

4.2.20.4.1.2 Element Priority
This element specifies the thread priority that will be used by the ResendManager
thread. Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

Full path OpenSplice/Domain/Daemon/ResendManager/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/ResendManager/
Scheduling/Priority

Format integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
138
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.4.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.2.20.5 Element Watchdog
This element controls the scheduling characteristics of the Watchdog thread. This
thread is responsible for sending domain service heartbeats, updating liveliness of
the service builtin DataWriters and monitoring the health of internal services and
heartbeats of remote domain services.

4.2.20.5.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

Full path OpenSplice/Domain/Daemon/ResendManager/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/Domain/Daemon/Watchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Watchdog/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
139
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.5.1.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes. The Default
value is controlled by the GeneralWatchdog settings (see section 4.2.21.1.1 on page
145).

4.2.20.5.1.2 Element Priority
This element specifies the thread priority that will be used by the watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities. The Default
value is controlled by the GeneralWatchdog settings (see section 4.2.21.1.2 on page
145).

Full path OpenSplice/Domain/Daemon/Watchdog/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Watchdog/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>
140
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.6 Element Heartbeat
The Splice Daemon uses an heartbeat mechanism to monitor the health of the
remote domain services. This element allows fine-tuning of this heartbeat
mechanism.
Please note this heartbeat mechanism is similar to but not the same as the service
liveliness assertion.

4.2.20.6.1 Attribute transport_priority
This attribute controls the transport priority QoS setting that is only used by the
Splice Daemon for for sending its heartbeats.

4.2.20.6.2 Element ExpiryTime
This element specifies the maximum amount of time (in seconds) in which the
Splice Daemon expects a new heartbeat of remote domain services. This is
obviously also the same amount of time in which the Splice Daemon must send a
heartbeat itself.
Increasing this value will lead to less networking traffic and overhead but also to
less responsiveness with respect to the liveliness of the Splice Daemon. Change this
value according to the needs of your system with respect to these aspects.

Full path OpenSplice/Domain/Daemon/Heartbeat
Occurrences (min-max) 0 - 1
Child-elements Element ExpiryTime

Element Scheduling
Required attributes 0
Optional attributes Attribute transport_priority

Full path OpenSplice/Domain/Daemon/Heartbeat
[@transport_priority]

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - maxInt
Required false
141
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.6.2.1 Attribute update_factor
In case of a (temporary) high CPU load, the scheduling behaviour of the operating
system might affect the capability of the Splice Daemon to send its heartbeat ‘on
time’. This attribute introduces some elasticity in this mechanism by making the
service send its heartbeat more often than required by the ExpiryTime.
The Splice Daemon will report its liveliness every ExpiryTime multiplied by this
update_factor.

4.2.20.6.3 Element Scheduling
This element specifies the scheduling parameters used by the thread that
periodically sends the heartbeats.

Full path OpenSplice/Domain/Daemon/Heartbeat/
ExpiryTime

Format float
Dimension seconds
Default value 10.0
Valid values 0.2 - maxFloat
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute update_factor
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Heartbeat/ExpiryTime
[@update_factor]

Format float
Dimension n/a
Default value 0.2
Valid values 0.1 - 0.9
Required true
142
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.6.3.1 Element Class
This element specifies the thread scheduling class that will be used by the thread
that periodically sends the heartbeats. The user may need the appropriate privileges
from the underlying operating system to be able to assign some of the privileged
scheduling classes.

4.2.20.6.3.2 Element Priority
This element specifies the thread priority that will be used by the thread that
periodically sends the heartbeats. Only priorities that are supported by the
underlying operating system can be assigned to this element. The user may need
special privileges from the underlying operating system to be able to assign some of
the privileged priorities.

Full path OpenSplice/Domain/Daemon/Heartbeat/
Scheduling

Occurrences (min-max) 0 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Heartbeat/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/Daemon/Heartbeat/
Scheduling/Priority

Format unsigned integer
Dimension n/a
143
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.20.6.3.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.2.21 Element GeneralWatchdog
This element controls the default scheduling characteristics of the Watchdog thread
for all services. Individual services may overrule this default in their
service-specific Watchdog settings.

4.2.21.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/Domain/Daemon/Heartbeat/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/Domain/GeneralWatchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>
144
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.21.1.1 Element Class
This element specifies the default thread scheduling class that will be used by the
watchdog thread of each service if not overruled by service specific settings. The
user may need the appropriate privileges from the underlying operating system to be
able to assign some of the privileged scheduling classes.

4.2.21.1.2 Element Priority
This element specifies the default thread priority that will be used by the watchdog
thread of each service if not overruled by service specific settings. Only priorities
that are supported by the underlying operating system can be assigned to this
element. The user may need special privileges from the underlying operating system
to be able to assign some of the privileged priorities.

Full path OpenSplice/Domain/GeneralWatchdog/Scheduling
Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/GeneralWatchdog/Scheduling/
Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/GeneralWatchdog/Scheduling/
Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
145
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.22 Element UserClockService
The UserClockService allows you to plug-in a custom clock library, allowing
OpenSplice to read the time from an external clock source. It expects a root element
named OpenSplice/Domain/UserClockService. Within this root element, the
userclock will look for several child-elements. Each of these is listed and explained.

4.2.22.1 Element UserClockModule
This element specifies the User Clock Service library file. On UNIX like and
Windows platforms this will be a shared library. On VxWorks this will be a
reallocatable object file. On VxWorks this tag may be empty or discarded if the
functions are pre-loaded on the target.

Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/UserClockService
Occurrences (min-max) 0 - 1
Child-elements Element UserClockModule

Element UserClockStart
Element UserClockStop
Element UserClockQuery

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/UserClockService/
UserClockModule

Format string
Dimension file name
Default value n/a
Valid values dependent on underlying operating system.
Occurrences (min-max) 1 - 1
146
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.2 The Domain Service

4.2.22.2 Element UserClockStart
This element specifies if the user clock requires a start function to be called when
the process first creates a participant.

4.2.22.2.1 Attribute name
This attribute specifies the name of the start function. This start function should not
have any parameters, and needs to return an int that represents 0 if there are no
problems, and any other value if a problem is encountered.

4.2.22.3 Element UserClockStop
This element specifies if the user clock requires a stop function to be called when
the process deletes the last participant.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/Domain/UserClockService/
UserClockStart

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/Domain/UserClockService/
UserClockStart[@name]

Format string
Dimension function name
Default value clockStart
Valid values name of any existing and accessible function
Required true

Full path OpenSplice/Domain/UserClockService/
UserClockStop

Occurrences (min-max) 0 - 1
147
Deploying OpenSplice DDS�������	

4 Service Configuration 4.2 The Domain Service

4.2.22.3.1 Attribute name
This attribute specifies the name of the stop function. This stop function should not
have any parameters, and needs to return an int that represents 0 if there are no
problems, and any other value if a problem is encountered.

4.2.22.4 Element UserClockQuery
This element specifies the clock query function.

4.2.22.4.1 Attribute name
This attribute specifies the name of the function that gets the current time. This
clockGet function should not have any parameters, and needs to return the current
time as an os_time type.
The definition of the os_time type can be found in os_time.h:
typedef struct os_time {
 /** Seconds since 1-jan-1970 00:00 */
 os_timeSec tv_sec;
 /** Count of nanoseconds within the second */
 os_int32 tv_nsec;
 /** os_time can be used for a duration type with the following

Child-elements <none>
Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/Domain/UserClockService/
UserClockStop[@name]

Format string
Dimension function name
Default value clockStop
Valid values name of any existing and accessible function
Required true

Full path OpenSplice/Domain/UserClockService/
UserClockQuery

Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute name
Optional attributes <none>
148
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

 semantics for negative durations: tv_sec specifies the
 sign of the duration, tv_nsec is always possitive and added
 to the real value (thus real value is tv_sec+tv_nsec/10^9,
 for example { -1, 500000000 } is -0.5 seconds) */
} os_time;

4.3 The Durability Service
The responsibilities of the durability service are to realize the durable properties of
data in an OpenSplice system. The Durability Service looks for its configuration
within the ‘OpenSplice/DurabilityService’ element. The configuration parameters
that the Durability Service will look for within this element are listed and explained
in the following subsections.

4.3.1 Attribute name
This attribute uniquely identifies the configuration for the Durability Service.
Multiple Durability Service configurations can be specified in one single resource
so long as each has its own unique name. The actual applicable configuration is

Full path OpenSplice/Domain/UserClockService/
UserClockQuery[@name]

Format string
Dimension function name
Default value clockGet
Valid values name of any existing and accessible function
Required true

Full path OpenSplice/DurabilityService/
Occurrences (min-max) 1 - 1
Child-elements Element Network

Element Persistent
Element NameSpaces
Element Watchdog
Element EntityNames
Element Tracing

Required attributes Attribute name
Optional attributes <none>
149
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

determined by the value of the name attribute, which matches the one specified
under the attribute OpenSplice/Domain/Service[@name] in the configuration of the
Domain Service.

4.3.2 Element Network
Applications need to be able to gain access to historical data in a system. When the
local DDS service gets connected to a remote DDS service by means of the Network
Service, (parts of) the historical data might not be consistent between the local and
remote Durability Services. The Durability Service needs to be able to detect the
other available Durability Services and exchange historical data with them to keep
and/or restore consistency in historical data between them.
The Network element provides handles to fine-tune the behaviour of the
communication between Durability Services on network level. These settings only
apply when the Network Service is active.

4.3.2.1 Attribute latency_budget
This attribute controls the latency budget QoS setting that is used by the Durability
Service for its communication with other Durability Services.

Full path OpenSplice/DurabilityService[@name]
Format string
Dimension n/a
Default value durability
Valid values any string
Required true

Full path OpenSplice/DurabilityService/Network
Occurrences (min-max) 0 - 1
Child-elements Element Heartbeat

Element InitialDiscoveryPeriod
Element Alignment
Element WaitForAttachment

Required attributes <none>
Optional attributes Attribute latency_budget

Attribute transport_priority
150
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

This is a hint for the service that it can delay messages for as long as the specified
latency_budget to optimize bandwidth utilization. The Network Service can use this
delay to pack several messages into a single network message. The default value is
zero, meaning that messages are sent to the network immediately.

4.3.2.2 Attribute transport_priority
This attribute specifies the transport priority for alignment communication between
durability services. The Network Service will shedule inter-durability
communication relative to other communication based on this transport priority.
For example, if the latency of timing-critical application data should not be
disturbed by alignment activities between durability services, then this transport
priority should be configured lower than the application policy.

4.3.2.3 Element Heartbeat
During startup and at runtime, the network topology can change dynamically. This
happens when OpenSplice services are started/stopped or when a network cable is
plugged in/out. The Durability Services need to keep data consistency in that
environment. To detect newly joining services as well as detecting services that are
leaving, the Durability Service uses a heartbeat mechanism. This element allows
fine-tuning of this mechanism.
Please note this heartbeat mechanism is similar to but not the same as the service
liveliness assertion.

Full path OpenSplice/DurabilityService/
Network[@latency_budget]

Format float
Dimension seconds
Default value 0.0
Valid values 0.0 - maxFloat
Required false

Full path OpenSplice/DurabilityService/
Network[@transport_priority]

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - maxInt
Required false
151
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.3.1 Attribute latency_budget
This attribute controls the latency budget QoS setting (in seconds) that is only used
by the Durability Service for sending its heartbeats. It overrules the value of the
DurabilityService/Network[@latency_budget].

4.3.2.3.2 Attribute transport_priority
This attribute controls the transport priority QoS setting that is only used by the
Durability Service for sending its heartbeats. It overrules the value of the
DurabilityService/Network[@transport_priorrity].

Full path OpenSplice/DurabilityService/Network/Heartbeat
Occurrences (min-max) 0 - 1
Child-elements Element ExpiryTime

Element Scheduling
Required attributes 0
Optional attributes Attribute latency_budget

Attribute transport_priority

Full path OpenSplice/DurabilityService/Network/
Heartbeat[@latency_budget]

Format float
Dimension seconds
Default value 0.0
Valid values 0.0 - maxFloat
Required false

Full path OpenSplice/DurabilityService/Network/
Heartbeat[@transport_priority]

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - maxInt
Required false
152
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.3.3 Element ExpiryTime
This element specifies the maximum amount of time in which the Durability Service
expects a new heartbeat of other Durability Services. This is obviously also the
same amount of time in which the Durability Service must send a heartbeat itself.
Increasing this value will lead to less network traffic and overhead but also to less
responsiveness with respect to the liveliness of a Durability Service. Change this
value according to the needS of your system with respect to these aspects.

4.3.2.3.3.1 Attribute update_factor
In case of a (temporary) high CPU load, the scheduling behaviour of the operating
system might affect the capability of the Durability Service to send its heartbeat ‘on
time’. This attribute introduces some elasticity in this mechanism by making the
service send its heartbeat more often than required by the ExpiryTime.
The Durability Service will report its liveliness every ExpiryTime multiplied by this
update_factor.

Full path OpenSplice/DurabilityService/Network/
Heartbeat/ExpiryTime

Format float
Dimension seconds
Default value 10.0
Valid values 0.2 - maxFloat
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute update_factor
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/
Heartbeat/ExpiryTime[@update_factor]

Format float
Dimension n/a
Default value 0.2
Valid values 0.1 - 0.9
Required true
153
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.3.4 Element Scheduling
This element specifies the scheduling parameters used by the thread that
periodically sends the heartbeats.

4.3.2.3.4.1 Element Class
This element specifies the thread scheduling class that will be used by the thread
that periodically sends the heartbeats. The user may need the appropriate privileges
from the underlying operating system to be able to assign some of the privileged
scheduling classes.

4.3.2.3.4.2 Element Priority
This element specifies the thread priority that will be used by the thread that
periodically sends the heartbeats. Only priorities that are supported by the
underlying operating system can be assigned to this element. The user may need
special privileges from the underlying operating system to be able to assign some of
the privileged priorities.

Full path OpenSplice/DurabilityService/Network/Heartbeat/
Scheduling

Occurrences (min-max) 0 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/Heartbeat/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
154
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.3.4.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.3.2.4 Element InitialDiscoveryPeriod
On startup the Durability Service needs to determine, for each namespace, if it has
to align with other Durability Services in the system or if it has to load the initial
state from disk (load persistent data). For this the Durability Service will publish a
request for information and wait for the specified initial discovery period for all
Durability services to respond. The Durability Service will load the persistent data
from disk if no response is received within the specified initial discovery period.
This initial discovery period should be configured greater than the worst case
expected discovery time which is related to underlying hardware, type of network,
network configuration, and expected load. If the initial discovery period is too short
the Durability Service may conclude that there is no running system and load the
data from disk, which will result in conflicting states (‘split-brain syndrome’) i.e.
two separate systems1.

Full path OpenSplice/DurabilityService/Network/Heartbeat/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/DurabilityService/Network/Heartbeat/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false
155
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

The Durabiltiy Service will wait for at least the full initial discovery period before it
can continue and become operational, so for fast startup times it is important to keep
the initial discovery period as small as possible.

4.3.2.5 Element Alignment
The Durability Service is responsible for keeping its local cache consistent with the
other available Durability caches in the system. To do this, it needs to exchange data
to recover from inconsistencies. The exchange of durable data to restore consistency
is called alignment. This element allows fine-tuning alignment behaviour of the
Durability Service.

1. The metaphoric term ‘split-brain syndrome’ is sometimes used to highlight the results of
a temporary outage of communications between two parts of a system. In such a
situation, the states of the disconnected parts evolve separately and become
incompatible, so that by the time communication is restored the system has become
‘schizophrenic’.

Full path OpenSplice/DurabilityService/Network/
InitialDiscoveryPeriod

Format float
Dimension seconds
Default value 3.0
Valid values 0.1 - 10.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/Alignment
Occurrences (min-max) 0 - 1
Child-elements Element TimeAlignment

Element AlignerScheduling
Element AligneeScheduling
Element RequestCombinePeriod
Element TimeToWaitForAligner

Required attributes <none>
Optional attributes Attribute latency_budget

Attribute transport_priority
156
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.1 Attribute latency_budget
This attribute specifies the latency budget QoS setting (in seconds) that is only used
by the Durability Service for the alignment of data. It overrules the value of the
DurabilityService/Network[@latency_budget].

4.3.2.5.2 Attribute transport_priority
This attribute specifies the transport priority QoS setting that is only used by the
Durability Service for the alignment of data. It overrules the value of the
DurabilityService/Network[@transport_priority].

4.3.2.5.3 Element TimeAlignment
This attribute specifies whether time on all Domain Services in the domain can be
considered aligned or not. This setting needs to be consistent for all durability
services in the domain. In case there is no time alignment, the durability service
needs to align more data to compensate possible timing gaps between different
Domain Services in the domain.

Full path OpenSplice/DurabilityService/Network/
Alignment[@latency_budget]

Format float
Dimension seconds
Default value 0.0
Valid values 0.0 - maxFloat
Required false

Full path OpenSplice/DurabilityService/Network/
Alignment[@transport_priority]

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - maxInt
Required false

Full path OpenSplice/DurabilityService/Network/
Alignment/TimeAlignment

Format boolean
Dimension n/a
157
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.4 Element AlignerScheduling
This element specifies the scheduling parameters used to control the thread that
aligns other durability services.

4.3.2.5.4.1 Element Class
This element specifies the thread scheduling class that will be used by the aligner
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

Default value true
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/
Alignment/AlignerScheduling

Occurrences (min-max) 0 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/
Alignment/AlignerScheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
158
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.4.2 Element Priority
This element specifies the thread priority that will be used by the aligner thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.3.2.5.4.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.3.2.5.5 Element AligneeScheduling
This element specifies the scheduling parameters used to control the thread that
makes sure the local service becomes and stays aligned.

Full path OpenSplice/DurabilityService/Network/
Alignment/AlignerScheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/DurabilityService/Network/Alignment/
AlignerScheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false
159
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.5.1 Element Class
This element specifies the thread scheduling class that will be used by the alignee
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.3.2.5.5.2 Element Priority
This element specifies the thread priority that will be used by the alignee thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

Full path OpenSplice/DurabilityService/Network/
Alignment/AligneeScheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/
Alignment/AligneeScheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/
Alignment/AligneeScheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
160
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.5.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.3.2.5.6 Element RequestCombinePeriod
When the Durability Service detects an inconsistency with another Durability
Service, it requests that service to align it. The service that receives this request will
restore consistency by sending the requested information. In some cases, the
Durability Service may receive alignment requests from multiple Durability
Services for the same information around the same moment in time. To reduce the
processing and network load in that case, the Durability Service is capable of
aligning multiple Durability Services concurrently.
The RequestCombinePeriod has 2 child-elements: a setting that is used when the
current Durability Service is not yet aligned with all others (Initial) and one for the
period after that (Operational). These values specify the maximum amount of time
the Durability service is allowed to wait with alignment after an alignment request
has been received.
Increasing the value will increase the amount of time in which the Durability
Service restores from inconsistencies, but will decrease the processing and network
load in case multiple Durability Services need to resolve the same data around the
same time. Increasing the value is useful in case more than two Domain Services for
the same Domain are started at the same time.

Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/DurabilityService/Network/Alignment/
AligneeScheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false
161
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.6.1 Element Initial
This element specifies the maximum amount of time the Durability Service is
allowed to wait with alignment after an alignment request has been received and the
service itself is not yet considered operational because it has not yet aligned itself
with all other Durability Services.

4.3.2.5.6.2 Element Operational
This element specifies the maximum amount of time the Durability Service is
allowed to wait with alignment after an alignment request has been received and the
service itself is already considered operational.

Full path OpenSplice/DurabilityService/Network/
Alignment/RequestCombinePeriod

Occurrences (min-max) 0 - 1
Child-elements Element Initial

Element Operational
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/Alignment/
RequestCombinePeriod/Initial

Format float
Dimension seconds
Default value 0.5
Valid values 0.01 - 5.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/Alignment/
RequestCombinePeriod/Operational

Format float
Dimension seconds
Default value 0.01
162
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.5.7 Element TimeToWaitForAligner
When all Durability Services in the domain have configured their aligner element
as false (see section 4.3.4.2.6 on page 182 for a full description of
OpenSplice/DurabilityService/NameSpaces/Policy[@aligner]), none of them is able
to act as an aligner for newly-started Durability Services. Therefore late-joining
Durability Services will not be able to obtain historical data that is available in the
domain.
This element specifies the period (in seconds) to wait until an aligner becomes
available in the domain. If an aligner does not become available within the period
specified by this element, the entire federation will terminate and return with error
code 1 (recoverable error).
Currently only values between 0.0 and 1.0 are supported, and all non-zero values
are interpreted as infinite (so basically the time-out is currently either zero or
infinite). The default is 1.0. Note that when the element aligner (see section
4.3.4.2.6) is set to true the current Durability Service is able to act as aligner for
other Durability Services with respect to the specified namespace and the federation
will not terminate.

Valid values 0.01 - 5.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Network/Alignment/
TimeToWaitForAligner

Format float
Dimension seconds
Default value 1.0
Valid values 0.0 - 1.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
163
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.2.6 Element WaitForAttachment
The Durability Service depends on the Network Service for its communication with
other Durability Services. Before it starts communicating, it must make sure the
Network Service is ready to send the data. This element specifies what services
must be available and how long the Durability Service must wait for them to
become available before sending any data.

4.3.2.6.1 Attribute maxWaitCount
This attribute specifies the number of times the Durability Service checks if the
services specified in the DurabilityService/Network/WaitForAttachment/
ServiceName elements are available before sending any data. The time between two
checks is 100ms. An error is logged if one of the services still is unavailable
afterwards. The service will continue after that, but this indicates a problem in the
configuration and the service might not function correctly anymore.

4.3.2.6.2 Element ServiceName
This element specifies the name of the service(s) that the Durability Service waits
for, before starting alignment activities for a specific topic-partition combination. If
(for example) the communication between Durability Services is dependent on the
availability of certain local Network Services, then the Durability Service must wait
until these are operational.

Full path OpenSplice/DurabilityService/Network/
WaitForAttachment

Occurrences (min-max) 0 - 1
Child-elements Element ServiceName
Required attributes 0
Optional attributes Attribute maxWaitCount

Full path O p e n S p l i c e /D u r a b i l i t yS e r v i c e / N e t w o rk /
WaitForAttachment[@maxWaitCount]

Format unsigned integer
Dimension 100ms per wait
Default value 200
Valid values 1 - 1000
Required false
164
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.3 Element Persistent
The Durability Service is responsible for persisting data from Persistent Topics to
disk. This configuration element controls where the data is stored and how the
Durability Service will perform this task.
Note that these elements are only available as part of the DDS persistence profile of
OpenSplice.

4.3.3.1 Element StoreDirectory
This element determines the location where the persistent data will be stored on
disk. The value should point to a directory on disk. If this parameter is not
configured, the Durability Service will not manage persistent data.

Full path OpenSplice/DurabilityService/Network/
WaitForAttachment/ServiceName

Format string
Dimension name of an existing service
Default value networking
Valid values any valid service name
Occurrences (min-max) 1 - *
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent
Occurrences (min-max) 0 - 1
Child-elements Element StoreDirectory

Element StoreMode
Element StoreSessionTime
Element StoreSleepTime
Element StoreOptimizeInterval
Element Scheduling
Element MemoryMappedFileStore
Element SmpCount

Required attributes <none>
Optional attributes <none>
165
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.2 Element StoreMode
This element specifies the plugin that is used to store the persistent data on disk.
• With "XML" mode, the service will store persistent data in XML files.
• With “MMF” mode, the service will store persistent data in a Memory Mapped

File that exactly represents the memory that is being used by the persistent store.
• With “KV” mode the service will store persistent data in a key-value store.
The key-value store makes use of a third-party product to store the persistent data; it
currently supports SQLite and LevelDB store implementations.
CAUTION: The “MMF” store is currently only implemented on linux. For “KV”
stores, SQLite is supported on linux, Windows, and Solaris; LevelDB is only
supported on linux.

Full path OpenSplice/DurabilityService/Persistent/
StoreDirectory

Format string
Dimension path to directory
Default value /tmp/pstore
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
StoreMode

Format enumeration
Dimension n/a
Default value XML
Valid values XML, MMF, KV
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
166
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.3 Element StoreSessionTime
The Durability Service has a persistency thread that periodically (in sessions) writes
persistent data to disk, this element together with the Element StoreSleepTime can be
used to optimize disk access. This element specifies the maximum session time (in
seconds) for the persistency thread. After this period of time, it makes sure data is
flushed to disk.

4.3.3.4 Element StoreSleepTime
This element specifies the period of time (in seconds) the persistency thread sleeps
between two store sessions, also see Element StoreSessionTime. This allows
influencing the CPU load of the persistency thread.

Full path OpenSplice/DurabilityService/Persistent/
StoreSessionTime

Format float
Dimension seconds
Default value 20.0
Valid values 5.0 - 60.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
StoreSleepTime

Format float
Dimension seconds
Default value 2.0
Valid values 0.5 - 10.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
167
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.5 Element StoreOptimizeInterval
This element determines after how many write actions the persistent set for a
specific partition-topic combination is optimized on disk. Persistent data is
sequentially written to disk without removing data that according to key values and
history policies can be removed. During a store optimize action the Durability
Service will rewrite the file and thereby remove all disposable data. Note that a long
interval will minimize the induced mean load but instead increases burst load.

4.3.3.6 Element Scheduling
This element specifies the scheduling parameters used to control the thread that
stores persistent data on permanent storage.

4.3.3.6.1 Element Class
This element specifies the thread scheduling class that will be used by the persistent
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

Full path OpenSplice/DurabilityService/Persistent/
StoreOptimizeInterval

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 1000000000
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
168
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.6.2 Element Priority
This element specifies the thread priority that will be used by the persistent thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.3.3.6.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/DurabilityService/Persistent/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
169
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.7 Element MemoryMappedFileStore
CAUTION: The “MMF” store is currently only implemented on linux.
This element specifies the memory mapped file store mode parameters. This
element is only valid when the Persistent/StoreMode element (see Section
4.3.3.2, Element StoreMode, on page 166) is set to “MMF”. The size and the starting
address of the memory file must be supplied.

4.3.3.7.1 Element Size
CAUTION: The “MMF” store is currently only implemented on linux.
This element specifies the size of the memory mapped file used to store persistent
data. Change this value according to the size of your persistent data. The file should
be big enough to store:
• all persistent data in your specified namespaces
• plus a potential backup for all persistent data in namespaces whose content may

be replaced by persistent data from another master.
As a rule of thumb, the persistent store should be twice the size of your combined
persistent data in your specified namespaces. Please note that the operating system
must be configured to support the requested size.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.

Full path OpenSplice/DurabilityService/Persistent/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/DurabilityService/Persistent/
MemoryMappedFileStore

Occurrences (min-max) 1 - 1
Child-elements Element Size

Element Address
Required attributes <none>
Optional attributes <none>
170
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.7.2 Element Address
CAUTION: The “MMF” store is currently only implemented on linux.
This element specifies the start address where the file is mapped into the virtual
memory. The possible values are platform dependent. Change this value if the
default address is already in use, for example by another Domain Service or another
product.

4.3.3.8 Element SmpCount
This element determines how many threads the Durability service will spawn to
write persistent data to disk. Note that this attribute is currently only supported for
MMF (memory mapped file) StoreMode.

Full path OpenSplice/DurabilityService/Persistent/
MemoryMappedFileStore/Size

Format unsigned integer, human-readable
Dimension bytes
Default value 10485760
Valid values min: 1048576
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
MemoryMappedFileStore/Address

Format (hexadecimal) memory address
Dimension memory address
Default value 0x80000000 (Linux)
Valid values depends on operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
171
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

Please also note that although technically the maximum valid value for this element
is maxInt, the operating system may impose a lower limit, to prevent ‘runaway’
consumption of resources and loss of performance. It is recommended that increases
of this value are carefully considered!
CAUTION: The “MMF” store is currently only implemented on linux.

4.3.3.9 Element KeyValueStore
CAUTION: The “KV” store is currenly only supported on linux (SQLite and
LevelDB), Windows (SQLite), and Solaris (SQLite).
This element specifies the key-value store mode parameters. This element is only
valid when the Persistent/StoreMode element is set to “KV” (see Section
4.3.3.2, Element StoreMode, on page 166).
It specifies which third-party software is used to implement the key-value store.

4.3.3.9.1 Attribute type
This attribute specifies the third-party product that is used to implement the KV
store.
Products currently supported are SQLite and LevelDB.

Full path OpenSplice/DurabilityService/Persistent/
SmpCount

Format unsigned integer
Dimension n/a
Default value 1
Valid values 1 - maxInt; may be limited by operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Persistent/
KeyValueStore

Occurrences (min-max) 0 - 1
Child-elements Element ConfigParameters
Required attributes Attribute type
Optional attributes <none>
172
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.3.9.2 Element ConfigParameters
This element is used to set parameters that are specific to the third-party product
used to implement the KV store. The element consists of a list of parameters which
are separated by semicolons (‘;’). Each parameter is either a single name or a
key-value pair where the key and the value are separated by a ‘=’ character.
Invalid or ‘not recognized’ values are ignored.
• When SQLite is selected as KV store implementation, refer to the Sqlite

documentation for full details of the available parameters (see
http://www.sqlite.org/pragma.html). The only exceptions are the parameters that
the KV store uses itself, which are: locking_mode, journal_mode,
wal_autocheckpoint and synchronous.

• When LevelDB is selected as the KV store the following parameters are available
(the information below has been taken from the current LevelDB
documentation—the project home page is at http://code.google.com/p/leveldb/):

paranoid_checks — boolean
If true, the implementation will do aggressive checking of the data it is
processing and it will stop early if it detects any errors. This may have
unforeseen ramifications: for example, a corruption of one database entry may
cause a large number of entries to become unreadable or for the entire database
to become unopenable.
Default: false

write_buffer_size — integer
Amount of data to build up in memory (backed by an unsorted log on disk)
before converting to a sorted on-disk file. Larger values improve performance,
especially during bulk loads. Up to two write buffers may be held in memory at
the same time, so you may wish to adjust this parameter to control memory
usage. Also, a larger write buffer will result in a longer recovery time the next
time the database is opened.
Default: 4MB

Full path OpenSplice/DurabilityService/Persistent/
KeyValueStore[@type]

Format enumeration
Dimension n/a
Default value sqlite
Valid values sqlite, leveldb
Required True
173
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

max_open_files — integer
Number of open files that can be used by the database. You may need to
increase this if your database has a large working set (budget one open file per
2MB of working set).
Default: 1000

block_size — integer
Approximate size of user data packed per block. Note that the block size
specified here corresponds to uncompressed data. The actual size of the unit
read from disk may be smaller if compression is enabled. This parameter can be
changed dynamically.
Set by the KV store to 1M.

verify_checksums — boolean
If true, all data read from underlying storage will be verified against
corresponding checksums.
Default: false

fill_cache — boolean
Should the data read for this iteration be cached in memory? Callers may wish
to set this field to false for bulk scans.
Default: true

Full path OpenSplice/DurabilityService/Persistent/
KeyValueStore/ConfigParameters

Format string containing a list of parameters separated by
‘;’ characters. Each parameter is either a single
name or a key-value pair where the key and the
value are separated by a ‘=’ character.

Dimension n/a
Default value n/a
Valid values depends on selected store implementation
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
174
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.4 Element NameSpaces
When a durability service wants to fulfill a particular role for some of the
namespaces in a domain, it must have some way of deducing the desired behavior
for those when encountered. For static, small-scale systems this can easily be solved
by statically configurating this role-behavior for all relevant namespaces for each
durability service in the domain.
In dynamic, large scale environments, the updating and maintaining of
configurations for each durability service when new namespaces enter the domain
can become quite cumbersome. Dynamic namespaces offer a solution for this
problem.
Instead of specifying each namespace seperately, dynamic namespaces introduce
the concept of namespace policies. A policy defines a generic role for the durability
service, together with a namespace expression. This expression can contain
wildcards, and is used to match against each namespace the durability service
encounters in a domain. The first policy with a matching expression is then applied
to the new namespace.

Specifying policies
Policies are specified in a fall-through manner, which means that the first (top)
policy to match a namespace is applied. Policies specify a range of options for
namespaces, which tell the durability service how to handle the data. The following
items can be configured:
• Durability
• Alignee
• Aligner
In the dynamic namespace configuration, the NameSpace element (a child of the
NameSpaces element) only supports a name attribute, which is mandatory. This
name will be used to match against policies.
An example of dynamic namespace configuration is shown on page 182, followed
by a short note about Backwards compatibility.

Full path OpenSplice/DurabilityService/NameSpaces
Occurrences (min-max) 1 - 1
Child-elements Element NameSpace

Element Policy
Required attributes <none>
Optional attributes <none>
175
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.1 Element NameSpace
A NameSpace describes a dependency between data in two or more partitions by
means of a partition expression. The dependency specifies that the data within one
of the partitions has no right to exist separately from the data in the other
partition(s). Namespaces determine which data must be managed by the Durability
service. Data that does not match any of the namespaces, is ignored by the
Durability service.

4.3.4.1.1 Attribute name
This element specifies the name for a namespace. A name is used to match a
namespace with a policy.

4.3.4.1.2 Element Partition
This element specifies a partition expression that matches the namespace. A
namespace consists of a set of partition expressions. Together they determine the
partitions that belong to the namespace. Make sure that the different name-spaces do
not have an overlap in partitions. The default configuration has one namespace
containing all partitions. A partition may contain the wildcards ‘*’ to match any
number of characters and ‘?’ to match a single character.

Full path OpenSplice/DurabilityService/NameSpaces/
NameSpace

Occurrences (min-max) 1 - *
Child-elements Element Partition

Element PartitionTopic
Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/DurabilityService/NameSpaces/
NameSpace[@name]

Format string
Dimension n/a
Default value “defaultNameSpace”
Valid values Any valid string
Required false
176
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.1.3 Element PartitionTopic
This element specifies a partition-topic expression that matches the namespace. A
group expression is a combination of a partition and a topic expression. The notation
is ‘partition.topic’. A namespace consists of a set of partition-topic
expressions. Together they determine the partition-topic combinations that belong to
the namespace. Make sure that the different namespaces do not have an overlap in
expressions. The default configuration has one namespace containing all
combinations (*.*). A partition-topic expression may contain the wildcards ‘*’ to
match any number of characters and ‘?’ to match a single character.

4.3.4.2 Element Policy
Policies are child elements of the NameSpaces element. The Policy element has a
mandatory nameSpace attribute, in which a namespace expression is expected. This
expression will be used to match with a namespace name.

Full path OpenSplice/DurabilityService/NameSpaces/
NameSpace/Partition

Format string
Dimension partition name
Default value “*”
Valid values any valid partition name
Occurrences (min-max) 1 - *
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/NameSpaces/
NameSpace/PartitionTopic

Format string
Dimension partition name.topic name
Default value “*.*”
Valid values any valid partition-topic combination
Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes <none>
Optional attributes <none>
177
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.2.1 Attribute nameSpace
The element specifies an expression that matches a namespace name. A namespace
may contain the wildcards ‘*’ to match any number of characters and ‘?’ to match
one single character.

4.3.4.2.2 Attribute delayedAlignment
This element determines whether the durability allows delayed alignment of initial
data. This can be useful for systems where there can be late-joining Durability
Services with a persistent dataset, which by default are then not inserted. When this
option is enabled, durability will only insert a persistent set from a late-joining
service when no writers have been created in the partitions matched by the
namespace.

Full path OpenSplice/DurabilityService/NameSpaces/Policy
Occurrences (min-max) 1 - *
Child-elements Element Merge
Required attributes Attribute nameSpace

Attribute durability
Attribute alignee
Attribute aligner

Optional attributes Attribute delayedAlignment

Full path OpenSplice/DurabilityService/NameSpaces/Policy[@nameSp
ace]

Format string
Dimension n/a
Default value *
Valid values any valid string
Required true

Full path OpenSplice/DurabilityService/NameSpaces/Policy[@delayed
Alignment]

Format boolean
Dimension n/a
178
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.2.3 Element Merge
This element specifies which action the Durability Service should take when a
mismatch in namespace state is discovered. Mismatches in namespace state
typically occur in the case of connectivity issues between two or more durability
services. When namespace states do not match, the middleware is unable to
determine which set is ‘right’. Therefore it provides the user with a number of
configuration parameters which determine how to handle a state mismatch.

4.3.4.2.3.1 Attribute type
The type attribute describes the kind of action required on a namespace state
mismatch.
• Ignore: Do nothing in case of a state mismatch. No samples are aligned, and

namespace states will not be updated.
• Merge: Merge historical data from other namespace state. This will result in a

new namespace state for the durability service that specifies this value.
• Delete: Dispose and delete historical data in case of a state mismatch.

Immediately after successful completion of the Delete merge action no transient
or persistent data will be available for late-joining readers, and all data in the
reader queue of existing readers will be disposed.

• Replace: Dispose and delete historical data in case of a state mismatch, and merge
data from another namespace state. This will result in a new namespace state for
the durability service that specifies this value. Immediately after successful
completion of the Replace merge action the replacement data will be available to
late-joining readers, the data in the reader queue of existing readers will be
disposed and replaced with the replacement data, and the generation count of the
replacement data is increased.

Default value false
Valid values true, false
Required false

Full path OpenSplice/DurabilityService/NameSpaces/Policy/
Merge

Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes Attribute type

Attribute scope
Optional attributes <none>
179
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.2.3.2 Attribute scope
The scope attribute describes for which scope the merge policy is valid. The scope
is a role-expression in which wildcards (‘*’ and ‘?’) are allowed. Roles are matched
at runtime against this expression to determine which policy applies for that role.
When a role doesn’t match any policy, ‘Ignore’ is assumed. The order of
specifying policies is important: the first scope expression that matches a role is
selected for that role.

4.3.4.2.4 Attribute durability
This element specifies how the durability service manages the data within the
NameSpace. The original durability of the data (determined by the DataWriter that
wrote it) can be ‘weakened’ (Persistent > Transient > Transient_local). This is
useful to improve resource usage of the durability service in the situation where
resource usage is more important then fault-tolerance. This parameter cannot be
used to increase the original durability of samples. In case the value of this
parameter is larger then the value a sample was published with, the sample will be
handled as specified in the DataWriter durability QoS.
• Persistent: Maximum profile. A sample will be handled as specified in the

durability Qos of the datawriter that wrote it.
• Transient: A sample will be stored transient at best.
• Transient_Local: A sample will be stored transient_local at best.

Full path OpenSplice/DurabilityService/NameSpaces/Policy/Merge
[@type]

Format enumeration
Dimension n/a
Default value Ignore
Valid values Ignore, Merge, Delete, Replace
Required true

Full path OpenSplice/DurabilityService/NameSpaces/Policy/Merge
[@scope]

Format String
Dimension n/a
Default value DefaultRole
Valid values any valid DDS role expression
Required true
180
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

• Durable: Convenience value that is equal to persistent.

4.3.4.2.5 Attribute alignee
This element determines how the durability service manages the data that matches
the namespace. Scalability of durable data is an issue in large systems. Keeping all
historical data within each Durability Service may not be feasible. Often Durability
Services are interested in a small part of the total system data. They are driven by
both performance (boot time, memory usage, network load, CPU load) and fault
tolerance (the need for replicates).
• Initial: The durability service requests historical data at startup and caches it

locally. Historical data will be available relatively fast for new local data readers
and the system is more fault-tolerant. However, caching of historical data requires
a relatively large amount of resources and a long boot time.

• Lazy: The Durability service caches historical data after local application interest
arises for the first time and a remote Durability service aligns the first data reader.
Historical data is available relatively slow for the first data reader, but for every
new data reader it is relatively fast. The caching resources are only used when
local interest in the data arises, so it only requires resources if there is actual local
interest. However, this method provides no fault-tolerance for the domain,
because the local Durability service is only partly a replica and is not able to
provide historical data to remote Durability service and/or remote data readers.

• On_Request: The Durability service will not cache historical data, but will align
each separate DataReader on a request basis (in the situation where it calls
wait_for_historical_data). Each new DataReader that wants historical data
therefore leads to a new alignment action. This is a good setting to limit the
amount of resources used, but will potentially lead to more network traffic. This
method provides no fault-tolerance for the domain.

Full path OpenSpl ice /Durabi l i tyServ ice /NameSpaces /Pol icy
[@durability]

Format enumeration
Dimension n/a
Default value Durable
Valid values Persistent, Transient, Transient_Local, Durable
Required true
181
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.4.2.6 Attribute aligner
This mandatory attribute determines whether the durability service can act as aligner
(provide historical data) for other durability services.

Example
Consider the following configuration example for the durability service:

<NameSpaces>
 <NameSpace name="Ns01">
 <Partition>A*</Partition>
 </NameSpace>
 <Policy nameSpace="Ns*" durability="Durable" alignee="Initial"
aligner="True"/>
 <Policy nameSpace="*" durability="Transient" alignee="Lazy"
aligner="False"/>
</NameSpaces>

From this configuration, the following behavior can be deduced:
• One namespace with name "Ns01" which holds all partitions with prefix "A" is

created and assigned with the following policy: {durabilityKind=Durable,
alignmentKind=Initial, aligner=True}

• All late-joining namespaces with prefix "Ns" will be assigned with the following
policy: {durabilityKind=Durable, alignmentKind=Initial, aligner=True}

• All other late joining namespaces (without prefix "Ns") will be assigned with the
following policy: {durabilityKind=Transient, alignmentKind=Lazy,
aligner=False}

Full path OpenSplice/DurabilityService/NameSpaces/Policy[@alignee]
Format enumeration
Dimension n/a
Default value Initial
Valid values Initial, Lazy, On_Request
Required true

Full path OpenSplice/DurabilityService/NameSpaces/Policy[@aligner]
Format boolean
Default value true
Valid values true, false
Required true
182
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

Backwards compatibility
Although the structure of the namespace configuration file has changed, the
durability service still supports the old format, where the policies for a namespace
are configured on the namespace element itself. An example of an old
configuration:

<NameSpaces>
 <NameSpace durabilityKind="Durable"
alignmentKind="Initial_and_Aligner">
 <Partition>*</Partition>
 </NameSpace>
</NameSpaces>

Note that this configuration is deprecated and supported only by the durability
service for backwards compatibility. New users should use the new configuration
and existing users should migrate to this configuration whenever possible. The
configurator will by default not accept the old format anymore. When for some
reason migration to the new format is not possible or desired, a user can use the
configurator from an older version, or edit the configuration file manually.
When converting from old to new format, all namespace elements must be provided
with a name, and a matching policy for that name must be defined. For the above
example of an old configuration, this could be the equivalent in the new format:

<NameSpaces>
 <NameSpace name="DefaultNameSpace">
 <Partition>*</Partition>
 </NameSpace>
 <Policy nameSpace="DefaultNameSpace" durability="Durable"
aligner="True" alignee="Initial"/>
</NameSpaces>

4.3.5 Element Watchdog
This element controls the characteristics of the Watchdog thread.

4.3.5.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

Full path OpenSplice/DurabilityService/Watchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>
183
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.5.1.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.3.5.1.2 Element Priority
This element specifies the thread priority that will be used by the watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

Full path OpenSplice/DurabilityService/Watchdog/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Watchdog/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Watchdog/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
184
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.5.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.3.6 Element EntityNames
This element specif ies the names of the various ent i t ies used by the
DurabilityService. The names specified here will be displayed in the OpenSplice
DDS Tuner when viewing the DurabilityService.

4.3.6.1 Element Publisher
This element specifies the name of the durability publisher.

Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/DurabilityService/Persistent/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/DurabilityService/EntityNames
Occurrences (min-max) 0 - 1
Child-elements Element Publisher

Element Subscriber
Element Partition

Required attributes <none>
Optional attributes <none>
185
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.6.2 Element Subscriber
This element specifies the name of the durability subscriber.

4.3.6.3 Element Partition
This element specifies the name of the durability partition.

Full path OpenSplice/DurabilityService/EntityNames/
Publisher

Format string
Dimension entity name
Default value “durabilityPublisher”
Valid values any string
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/EntityNames/
Subscriber

Format string
Dimension entity name
Default value “durabilitySubscriber”
Valid values any string
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/EntityNames/
Partition

Format string
Dimension partition name
Default value “durabilityPartition”
Valid values any valid partition name
186
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.3 The Durability Service

4.3.7 Element Tracing
This element controls the amount and type of information that is written into the
tracing log by the Durability Service. This is useful to track the Durability Service
during application development. In the runtime system it should be turned off.

4.3.7.1 Attribute synchronous
This attribute specifies whether tracing log updates are synchronous or not. A
synchronous update is immediately flushed to disk: there is no buffering and
therefore some performance overhead. Only use this option if you are debugging
and you want to make sure all Tracing info is on disk if (when) the service crashes.

4.3.7.2 Element OutputFile
This option specifies where the logging is printed to. Note that “stdout” is
considered a legal value that represents “standard out” and “stderr” is a legal value
representing “standard error”.
The default value is an empty string, indicating that all tracing is disabled.

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Tracing
Occurrences (min-max) 0 - 1
Child-elements Element OutputFile

Element Timestamps
Element Verbosity

Required attributes <none>
Optional attributes Attribute synchronous

Full path OpenSplice/DurabilityService/
Tracing[@synchronous]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false
187
Deploying OpenSplice DDS�������	

4 Service Configuration 4.3 The Durability Service

4.3.7.3 Element Timestamps
This element specifies whether the logging must contain timestamps.

4.3.7.3.1 Attribute Absolute
This attribute specifies whether the timestamps are absolute or relative to the startup
time of the service.

Full path OpenSplice/DurabilityService/Tracing/OutputFile
Format string
Dimension file name
Default value “” (empty string)
Valid values depends on operating system.
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DurabilityService/Tracing/Timestamps
Format boolean
Dimension n/a
Default value true
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute Absolute

Full path OpenSplice/DurabilityService/Tracing/
Timestamps[@absolute]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false
188
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.3.7.4 Element Verbosity
This element specifies the verbosity level of the loggin information. The higher the
level, the more (detailed) information will be logged. The value ‘FINEST’ produces
the most detailed log.

4.4 The Network and the Secure Network Service
4.4.1 The Network Service

The Network Service provides a bridge between the local DDS service and a
network interface.

The OpenSpl ice NetworkService supports both In ternet Protocol
Versions 4 and 6 (IPv4 & IPv6) where possible. Please refer to the Release Notes
(Known Issues section) to see if the IPv6 capability is present on your operating
system.
Note that each service instance will only communicate using one of these protocols.
It is an error to specify IPv6 (‘colon-separated hexadecimal’) and IPv4 (‘dotted
decimal’) addresses in the same NetworkService configuration.

Multiple Network Services can exist next to each other, each serving one physical
network interface.
Please refer to section Section 1.4, Applications which operate in multiple domains,
on page 17 for notes about applications operating in multiple domains and
interactions with the Network Service.

Full path OpenSplice/DurabilityService/Tracing/Verbosity
Format enumeration
Dimension n/a
Default value INFO
Valid values SEVERE, WARNING, INFO, CONFIG, FINE,

FINER, FINEST
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

i

189
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

The Network Service is responsible for forwarding data to the network and for
receiving data from the network. It can be configured to distinguish multiple
communication channels with different QoS policies assigned to be able to schedule
sending and receival of specific messages to provide optimal performance for a
specific application domain.
The Network Service is selected by using the following configuration element to the
Domain section of the configuration file (see Section 4.2.10, Element Application,
on page 111).

<Service name="networking">
 <Command>networking</Command>
</Service>

T he n e t w or k c on f ig u r a t i o n e x pec t s a r oo t e l emen t name d
OpenSplice/NetworkService. Within this root element, the Network Service
will look for several child-elements. Each of these is listed and explained.

4.4.1.1 Attribute name
This attribute identifies the configuration for the Network Service. Multiple
Network Service configurations can be specified in one single resource. The actual
applicable configuration is determined by the value of the name attribute, which
m u s t m a t c h t h e o n e s p e c i f i e d u n d e r t h e a t t r i b u t e
OpenSplice/Domain/Service[@name] in the configuration of the Domain Service.

Full path OpenSplice/NetworkService
Occurrences (min-max) 0 - *
Child-elements Element Watchdog

Element General
Element Partitioning
Element Channels
Element Discovery
Element Tracing
Element Compression

Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/NetworkService[@name]
Format string
Dimension n/a
190
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.2 Element Watchdog
This element controls the characteristics of the Watchdog thread.

4.4.1.2.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

4.4.1.2.1.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

Default value networking
Valid values any string
Required true

Full path OpenSplice/NetworkService/Watchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Watchdog/ Scheduling
Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Watchdog/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
191
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.2.1.2 Element Priority
This element specifies the thread priority that will be used by the watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.4.1.2.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Watchdog/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/NetworkService/Watchdog/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Occurrences (min-max) 0 - 1
Required false
192
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.3 Element General
This element contains general parameters that concern the Network Service as a
whole.

4.4.1.3.1 Element NetworkInterfaceAddress
This element specifies which network interface card (NIC) should be used.

Every Network Service is bound to only one network interface card. The card can be
uniquely identified by its corresponding IP address or by its symbolic name
(e.g. eth0). If the value “first available” is entered here, OpenSplice will try
to look up an interface that has the required capabilities. If the value for this element
is an Internet Protocol Version 6 (IPv6) address, then this NetworkService will
use IPv6 for communication.

Full path OpenSplice/NetworkService/General
Occurrences (min-max) 0 - *
Child-elements Element NetworkInterfaceAddress

Element Reconnection
Element EnableMulticastLoopback

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/General/
NetworkInterfaceAddress

Format string
Dimension n/a
Default value "first available"
Valid values "first available", any ‘dotted decimal’ IPv4 or

‘colon-separated hexadecimal’ IPv6 address, or a
symbolic name of a NIC

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute forced

Attribute ipv6
Remarks The given interface should have the required

capabilities, e.g. broadcasting
193
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

NOT E : O n I n t e g r i t y, I P a d d r e s s e s m u s t b e g ive n in t h e
NetworkInterfaceAddress element for nodes which have more than one
ethernet interface, as it is not possible to detect NIC broadcast/multicast capabilities
automatically in this environment.

4.4.1.3.1.1 Attribute forced
This attribute determines whether only the selected NetworkInterfaceAddress
will be used or whether others can be used too.
false Specifies that the NetworkInterfaceAddress will be used first, but

when it is not available any other available one can be used (default).
true Specifies that only the selected NetworkInterfaceAddress can be used.

4.4.1.3.1.2 Attribute ipv6
This attribute indicates that the Network Service should use Internet Protocol
Vers ion 6 (IPv6) for communica t ion . This a t t r ibute i s useful i f the
NetworkInterfaceAddress and/or GlobalPartition[@Address] are both
specified as values that do not canonically indicate the interface’s protocol version;
i.e. if an interface symbolic name or ‘first available’ is used for the former,
and host names are used for the latter.

Full path OpenSplice/NetworkService/General/
NetworkInterfaceAddress[@forced]

Format boolean
Dimension n/a
Default value false
Valid values true, false
Required false

Full path OpenSplice/NetworkService/General/
NetworkInterfaceAddress[@ipv6]

Format boolean
Dimension n/a
Default value false
Valid values true, false
Required false
194
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.3.2 Element Reconnection
This element specifies the desired network-behavior with respect to the validity of
restoring lost connectivity with remote Network Services. Here ‘lost connectivity’
means a prolonged inability to communicate with a known and still active remote
service (typically because of network issues) that has resulted in such a service
being declared ‘dead’ either by the Topology Discovery or lost-reliability being
detected by a reliable channel’s reactivity-checking mechanism. If automatic
reconnection is allowed, communication channels with the now-reachable-again
service will be restored, even though reliable data might have been lost during the
disconnection period.

4.4.1.3.2.1 Attribute allowed
This attribute specifies whether the network service must resume communication
with another network service when it has already been seen before but has been
disconnected for a while.
• false - Specifies that the network service must NOT resume communication.
• true - Specifies that the network service must resume communication.

4.4.1.3.3 Element EnableMulticastLoopback
This element specifies whether the Network Service will allow IP multicast packets
within the node to be visible to all network participants in the node, including itself.
It must be TRUE for intra-node multicast communications, but if a node runs only a
single OpenSplice Network Service and does not host any other network-capable
programs, it may be set to FALSE for improved performance.

Full path OpenSplice/NetworkService/General/Reconnection
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute allowed
Optional attributes <none>

Full path OpenSplice/NetworkService/General/Reconnection[@allowed]
Format boolean
Dimension n/a
Default value false
Valid values true, false
Required true
195
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4 Element Partitioning
The OpenSplice Network Service is capable of leveraging the network’s multicast
and routing capabilities. If some a priori knowledge about the participating nodes
and their topic and partition interest is available, then the Network Services in the
system can be explicitly instructed to use specific unicast or multicast addresses for
its network traffic. This is done by means of so-called network partitions.
A network partition is defined by one or more unicast, multicast or broadcast IP
addresses. Any Network Service that is started will read the network partition
settings and, if applicable, join the required multicast groups. For every sample
distributed by the Network Service, both its partition and topic name will be
inspected. In combination with a set of network partition mapping rules, the service
will determine which network partition the sample is written to. The mapping rules
are configurable as well.
Using network configuration, nodes can be disconnected from any network
partition. If a node is connected via a low speed interface, it is not capable of
receiving high volume data. If the DCPS partitioning is designed carefully, high
volume data is published into a specific partition, which in its turn is mapped onto a
specific network partition, which is itself only connected to those nodes that are
capable of handling high volume data.

Full path OpenSplice/NetworkService/General/
EnableMulticastLoopback

Format boolean
Dimension n/a
Default value false
Valid values false, true
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Partitioning
Occurrences (min-max) 0 - 1
196
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.1 Element GlobalPartition
This element specifies the global or default network partition. This global network
partition transports data that is either meant to be global, like discovery heartbeats,
or that is not mapped onto any other network partition.

4.4.1.4.1.1 Attribute Address
The GlobalPartition address is a list of one or more unicast, multicast or broadcast
addresses. If more than one address is specified, then the different addresses should
separated by commas (,) semicolons (;) or spaces (). Samples for the global
partition will be sent to all addresses that are specified in this list of addresses. To
specify the default broadcast address, use the expression “broadcast”. Addresses
can be entered as ‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’ IPv6
notation or as the symbolic hostname, in which case OpenSplice will try to resolve
the corresponding IP address.
If the value for this attribute is one, or more, ‘colon-separated hexadecimal’ Internet
Protocol Version 6 (IPv6) address(es), then the NetworkService will be
configured to use IPv6 for communication.

Child-elements Element GlobalPartition
Element NetworkPartitions
Element IgnoredPartitions
Element PartitionMappings

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Partitioning/
GlobalPartition

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute Address
Optional attributes Attribute MulticastTimeToLive

Full path OpenSplice/NetworkService/Partitioning/GlobalPartition
[@Address]

Format ‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’
IPv6 address, symbolic host name or “broadcast”

Dimension n/a
Default value "broadcast"
197
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.1.2 Attribute MulticastTimeToLive
For each UDP packet sent out, the TimeToLive header value is set to this value for
Multicast packets.
By specifying a value of ‘0’, multicast traffic can be confined to the local node, and
such ‘loopback’ performance is typically optimized by the operating system

4.4.1.4.2 Element NetworkPartitions
Network configuration can contain a set of network partitions, which are grouped
under the NetworkPartitions element.

4.4.1.4.2.1 Element NetworkPartition
Every NetworkPartition has a name, an address and a connected flag.

Valid values "broadcast", any ‘dotted decimal’ IPv4 or ‘colon-separated
hexadecimal’ IPv6 unicast or multicast address, or a
resolvable symbolic hostname

Required true
Remarks The given interface should have the required capabilities,

e.g. broadcasting or multicasting

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/GlobalPartition[@MulticastTimeToLive]

Format unsigned integer
Dimension n/a
Default value 32
Valid values 0 - 255
Required false

Full path OpenSplice/NetworkService/Partitioning/
NetworkPartitions

Occurrences (min-max) 0 - 1
Child-elements Element NetworkPartition
Required attributes <none>
Optional attributes <none>
198
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.2.1.1 Attribute Address
The address is a list of one or more unicast, multicast or broadcast addresses. If
more than one address is specified, then the different addresses should separated by
commas (,) semicolons (;) or spaces (). Samples for this partition will be sent to
all addresses that are specified in this list of addresses. To specify the default
broadcast address, use the expression “broadcast”. Addresses can be entered as
‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’ IPv6 notation or as the
symbolic hostname, in which case OpenSplice will try to resolve the corresponding
IP address.

4.4.1.4.2.1.2 Attribute Connected
This attribute specifies whether the Network Partition will join its associated
multicast group(s). The Network Partition will not join multicast group(s) when this
attribute is set to false and in that case not receive data from multicast groups, the

Full path OpenSplice/NetworkService/Partitioning/
NetworkPartitions/NetworkPartition

Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes Attribute Address

Attribute Connected
Optional attributes Attribute Name

Attribute Compression
Attribute MulticastTimeToLive

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/NetworkPartition[@Address]

Format ‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’
IPv6 address, symbolic host name or "broadcast"

Dimension n/a
Default value "broadcast"
Valid values "broadcast", any ‘dotted decimal’ IPv4 or ‘colon-separated

hexadecimal’ IPv6 unicast or multicast address or resolvable
symbolic hostname

Required true
Remarks The given interface should have the required capabilities,

e.g. broadcasting or multicasting.
199
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

data will be filtered out either by the network interface or by multicast enabled
switches. Note that this attribute has no effect on data sent and has no effect on data
received via a unicast address.

4.4.1.4.2.1.3 Attribute Name
The Name attribute identifies a Network Partition; it must be unique to create
associations with Element PartitionMappings.

4.4.1.4.2.1.4 Attribute Compression
If the Compression attribute is set on a partition, outgoing data will be compressed
before sending. Depending on the nature of the published data, this may improve
performance, particularly when on a slow network.

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/NetworkPartition[@Connected]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/NetworkPartition[@Name]

Format string
Dimension n/a
Default value string representation of the corresponding address
Valid values any valid partition name
Required false
Remarks The name should be unique over all network partitions.

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/NetworkPartition[@Connected]

Format boolean
Dimension n/a
200
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.2.1.5 Attribute MulticastTimeToLive
For each UDP packet sent out, the TimeToLive header value is set to this value for
Multicast packets.
By specifying a value of ‘0’, multicast traffic can be confined to the local node, and
such ‘loopback’ performance is typically optimized by the operating system

4.4.1.4.3 Element IgnoredPartitions
This element is used to group the set of IgnoredPartition elements.

4.4.1.4.3.1 Element IgnoredPartition
This element can be used to create a “Local Partition” that is only available within
the scope of the Domain Service on which it is specified, and therefore won't
generate network-load. Any DCPS partition-topic combination specified in this
element will not be distibuted by the Network Service.

Default value false
Valid values true, false
Required false

Full path OpenSplice/NetworkService/Partitioning/NetworkPartitions
/NetworkPartition[@MulticastTimeToLive]

Format unsigned integer
Dimension n/a
Default value 32
Valid values 0 - 255
Required false

Full path OpenSplice/NetworkService/Partitioning/
IgnoredPartitions

Occurrences (min-max) 0 - 1
Child-elements Element IgnoredPartition
Required attributes <none>
Optional attributes <none>
201
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.3.1.1 Attribute DCPSPartitionTopic
The Network Service will match any DCPS messages to the DCPSPartitionTopic
expression and determine if i t matches. The Parti t ionExpression and
TopicExpression are allowed to contain a ‘*’ wildcard, meaning that anything
matches. An exact match is considered better than a wildcard match. If a DCPS
messages matches an expression it will not be send to the network.

4.4.1.4.4 Element PartitionMappings
This element is used to group a set of PartitionMapping elements.

Full path OpenSplice/NetworkService/Partitioning/
IgnoredPartitions/IgnoredPartition

Occurrences (min-max) 1 - *
Child-elements <none>
Required attributes Attribute DCPSPartitionTopic
Optional attributes <none>

Full path OpenSplice/NetworkService/Partitioning/
IgnoredPartitions/IgnoredPartition
[@DCPSPartitionTopic]

Format PartitionExpression.TopicExpression
Dimension n/a
Default value *.*

Valid values Expressions containing * wildcards
Required true

Full path OpenSplice/NetworkService/Partitioning/
PartitionMappings

Occurrences (min-max) 0 - 1
Child-elements Element PartitionMapping
Required attributes <none>
Optional attributes <none>
202
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.4.4.1 Element PartitionMapping
This element specifies a mapping between a network partition and a partition-topic
combination.

In order to give network partitions a meaning in the context of DCPS, mappings
from DCPS partitions and topics onto network partitions should be defined.
Network allows for a set of partition mappings to be defined.

4.4.1.4.4.1.1 Attribute DCPSPartitionTopic
The Network Service will match any DCPS messages to the DCPSPartitionTopic
expression and determine if i t matches. The Parti t ionExpression and
TopicExpression are allowed to contain a ‘*’ wild card, meaning that anything
matches. An exact match is considered better than a wild card match. For every
DCPS message, the best matching partition is determined and the data is sent over
the corresponding network partition as specified by the matching NetworkPartition
element.

4.4.1.4.4.1.2 Attribute NetworkPartition
The NetworkPartition attribute of a partition mapping defines that network partition
that data in a specific DCPS partition of a specific DCPS topic should be sent to.

Full path OpenSplice/NetworkService/Partitioning/
PartitionMappings/PartitionMapping

Occurrences (min-max) 1 - *
Child-elements <none>
Required attributes Attribute DCPSPartitionTopic

Attribute NetworkPartition
Optional attributes <none>

Full path OpenSplice/NetworkService/Partitioning/PartitionMappings
/PartitionMapping[@DCPSPartitionTopic]

Format PartitionExpression.TopicExpression
Dimension n/a
Default value *.*

Valid values Expressions containing * wildcards
Required true
203
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5 Element Channels
This element is used to group a set of Channels.

The set of channels define the behaviour of the ‘network’ concerning aspects as
priority, reliability and latency budget. By configuring a set of channels, the
Network Service is able to function as a ‘scheduler’ for the network bandwidth. It
achieves this by using the application-defined DDS QoS policies of the data to
select the most appropriate channel to send the data.

4.4.1.5.1 Element Channel
This element specifies all properties of an individual Channel.

Full path OpenSplice/NetworkService/Partitioning/PartitionMappings
/PartitionMapping[@NetworkPartition]

Format string
Dimension n/a
Default value n/a
Valid values Any name of a previously defined network partition
Required true

Full path OpenSplice/NetworkService/Channels
Occurrences (min-max) 1 - 1
Child-elements Element Channel

Element AllowedPorts
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel
Occurrences (min-max) 1 - 42
204
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

The Network Service will make sure messages with a higher priority precede
messages with a lower priority and it uses the latency budget to assemble multiple
messages into one UDP packet where possible, to optimise the bandwidth usage. Of
course, its performance depends heavily on the compatibility of the configured
channels with the used DDS QoS policies of the applications.

4.4.1.5.1.1 Attribute name
The name uniquely identifies the channel.

4.4.1.5.1.2 Attribute reliable
If this attribute is set to true, the channel sends all messages reliably. If not, data is
sent only once (fire-and-forget).

Child-elements Element PortNr
Element AllowedPorts
Element FragmentSize
Element Resolution
Element AdminQueueSize
Element Sending
Element Receiving

Required attributes Attribute name
Attribute reliable
Attribute enabled

Optional attributes Attribute default
Attribute priority

Full path OpenSplice/NetworkService/Channels/Channel[@name]
Format string
Dimension n/a
Default value n/a
Valid values any string
Required true

Full path OpenSplice/NetworkService/Channels/Channel[@reliable]
Format boolean
Dimension n/a
Default value false
205
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

The specific channel a message is written into depends on the attached quality of
service. Once a message has arrived in a channel, it will be transported with the
quality of service attached to the channel. If the reliable attribute happens to be set
to true, the message will be sent over the network using a reliability protocol.

4.4.1.5.1.3 Attribute enabled
This attribute toggles a channel on or off.

Toggling a channel between enabled and disabled is a quick alternative for
commenting out the corresponding lines in the configuration file.

4.4.1.5.1.4 Attribute default
This attribute indicates whether the channel is selected as the default channel in case
no channel offers the quality of service requested by a message.
The network channels should be configured corresponding to the quality of service
settings that are expected to be requested by the applications. It might happen,
however, that none of the available channels meets the requested quality of service
for a specific message. In that case, the message will be written into the default
channel.

Valid values true, false
Required true
Remarks This setting should be consistent over all nodes in the

system

Full path OpenSplice/NetworkService/Channels/Channel[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/NetworkService/Channels/Channel[@default]
Format boolean
Dimension n/a
Default value false
206
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.5 Attribute priority
This attribute sets the transport priority of the channel.
Messages sent to the network have a transport_priority quality of service value.
Selection of a network channel is based on the priority requested by the message
and the priority offered by the channel. The priority settings of the different
channels divide the priority range into intervals. Within a channel, messages are
sorted in order of priority.

4.4.1.5.1.6 Element PortNr
This element specifies the port number used by the Channel. Messages for the
channel are sent to the port number given. Each channel needs its own unique port
number. Please note that ‘reliable’ channels use a second port, which is the specified
PortNr + 1.

Valid values true, false
Required false
Remarks Only one channel is allowed to have this attribute set to true

Full path OpenSplice/NetworkService/Channels/Channel[@priority]
Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - maxInt
Required false
Remarks The specified priority value has no relation to the operating

system threading priority.

Full path OpenSplice/NetworkService/Channels/Channel/
PortNr

Format unsigned integer
Dimension n/a
Default value n/a
Valid values depends on operating system
Occurrences (min-max) 1 - 1
207
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.7 Element AllowedPorts
This element specifies the port numbers available for the network service to be used
by the reliable network channels. The network channel is configured with a unique
port number. However, the reliable network channels require a second port number
to provide the reliable communication service. For this second port number each
reliable network channel will select a free port from the AllowedPorts.
When the AllowedPorts is not specified for a particular channel then the default
AllowedPorts which is configured on the Channels element is used. Also when the
default AllowedPorts is not specified each reliable network channel will first try to
use the configured portNr + 1 as the second port or when this port number is already
in use will determine a port number dynamically.
The AllowedPorts is a list of entries where an entry is a port number or a port
number range.
When the AllowedPorts contains more than one entry then these entries must be
seperated by commas (,). A port number range consists of the lower and the upper
bound of the port number range, where the lower and the upper bound are seperated
by a minus (-).

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
AllowedPorts

Format string containing ports or port ranges seperated by
commas. A port range consists of a lower bound
and an upper bound separated by a minus (-)

Dimension n/a
Default value n/a
Valid values depends on operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
208
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.8 Element FragmentSize
This element specifies the size of the fragments into which a large message will be
divided by the channel before it is sent to the UDP stack. Operating system settings
determine the maximum datagram size.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.

4.4.1.5.1.9 Element Resolution
The resolution indicates the number of milliseconds that this channel sleeps between
two consecutive resend or packing actions. Latency budget values are truncated to a
multiple of Resolution milliseconds.
It is considered good practice to specify the Resolution consistently throughout the
system.

Full path OpenSplice/NetworkService/Channels/Channel/
FragmentSize

Format unsigned integer, human-readable
Dimension bytes
Default value 1300
Valid values 200 - 65536 (if operating system allows it)
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Resolution

Format unsigned integer
Dimension milliseconds
Default value 10
Valid values 1 - MaxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
209
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.10 Element AdminQueueSize
For reliable channels the receiving side needs to keep the sending side informed
about the received data and the received control messages.
This is done by means of an "AdminQueue". This setting determines the size of this
queue, and it must be greater than the maximum number of reliable messages send
or received during each "Resolution" milliseconds.

4.4.1.5.1.11 Element Sending
This element describes all properties for the transmitting side of the Channel.

Full path OpenSplice/NetworkService/Channels/Channel/
AdminQueueSize

Format unsigned integer
Dimension messages
Default value 4000
Valid values 400 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Sending

Occurrences (min-max) 0 - 1
Child-elements Element CrcCheck

Element QueueSize
Element MaxBurstSize
Element ThrottleLimit
Element ThrottleThreshold
Element MaxRetries
Element RecoveryFactor
Element DiffServField
Element DontRoute
Element TimeToLive
Element Scheduling

Required attributes <none>
Optional attributes <none>
210
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.11.1 Element CrcCheck
This configuration element has been added in order to protect OpenSplice network
packets from malicious attacks. CRCs (Cyclic Redundancy Checks) are specifically
designed to protect against common types of errors on communication channels.
When enabled, the integrity of delivered network packets from one DDS process to
another is assured. There is a small performance cost to using this feature due to the
addtional overhead of carrying out the CRC calculations.
When the sending side is enabled the network packet will contain a valid crc field.

4.4.1.5.1.11.2 Element QueueSize
This element specifies the number of messages the network queue can contain.

Full Path OpenSplice/NetworkService/Channel/Channels/Se
nding/CrcCheck

Format boolean
Dimension n/a
Default value false
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/QueueSize

Format unsigned integer
Dimension messages
Default value 400
Valid values 1 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
211
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

The channel queue decouples DataWriters from the actual network processing,
DataWriters will write messages into the queue and the network service will read
the messages from the queue and marshal them onto the network according to the
desired quality of service. The size of the queue will determine the amount of
messages the channel can temporarily buffer in overload situations before blocking
DataWriters. Note that a large queue size also increases the worst-case latency, so in
general there is a trade off when blocking a DataWriter in favour of buffering more
messages.

4.4.1.5.1.11.3 Element MaxBurstSize
Amount in bytes to be sent at maximum every ‘Resolution’ milliseconds. The
default value is set to 1GB per resolution tick. This can be regarded as effectively
unlimited, as it far exceeds the capacity of current physical networks.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.

4.4.1.5.1.11.4 Element ThrottleLimit
Throttling is specific to reliable channels and will enable you to further limit (below
MaxBurstSize) the amount of data that is sent every Resolution interval. This
happens if a receiving Network Service indicates that it has trouble processing all
incoming data. This value is the lower boundary of the range over which the
throttling can adapt the limit. If this value is set to the same value as (or higher than)
MaxBurstSize throttling is disabled.
The ThrottleLimit value is not allowed be smaller than the FragmentSize. If a lower
value is provided, then the value of FragmentSize is used as ThrottleLimit.

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/MaxBurstSize

Format unsigned integer, human-readable
Dimension bytes/(resolution interval)
Default value 1073741823
Valid values 1024 - 1073741823
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
212
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.11.5 Element ThrottleThreshold
This is the number of unprocessed network fragments that a channel will store
before it will inform the senders that it has trouble processing the incoming data.
Those senders can use this information to adjust their throttle values, effectively
reducing the amount of incoming data in case of a temporary overflow, and
increasing again when the channel is able to catch up.
It is considered good practice to specify the ThrottleTreshold consistently
throughout the system.

4.4.1.5.1.11.6 Element MaxRetries
This element is only applicable for reliable channels.

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/ThrottleLimit

Format unsigned integer
Dimension bytes/(resolution interval)
Default value 10240
Valid values 0 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/ThrottleThreshold

Format unsigned integer
Dimension fragments
Default value 50
Valid values 2 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
213
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

A reliable channel implements a reliability protocol in which it builds a list of
connected remote services. This protocol expects all connected services to
acknowledge messages within a specific period of time, otherwise messages will be
resent. This element specifies the number of retransmissions the service has to
execute before considering that the addressed service has become unresponsive.
When this happens the remote service will be removed from the reliability protocol
and the channel will no longer expect messages to be acknowledged.

4.4.1.5.1.11.7 Element RecoveryFactor
A reliable channel implements a reliability protocol in which it builds a list of
connected remote services. This protocol expects all connected services to
acknowledge messages within a specific period of time otherwise messages will be
resent. The expected period of time is specified by this attribute as the number of
resolution ticks. (See also Section 4.4.1.5.1.9, Element Resolution, on page 209.)
The lost message is resent after Resolution * RecoveryFactor milliseconds.

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/MaxRetries

Format unsigned integer
Dimension n/a
Default value 100
Valid values 1 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/RecoveryFactor

Format unsigned integer
Dimension n/a
Default value 3
Valid values 2 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
214
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.11.8 Element DiffServField
This element describes the DiffServ setting the channel will apply to all its network
messages.

4.4.1.5.1.11.9 Element DontRoute
The IP DONTROUTE socket option is set to the value specified.

4.4.1.5.1.11.10 Element TimeToLive
For each UDP packet sent out, the IP Time To Live header value is set to the value
specified.

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/DiffServField

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 255
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full Path OpenSplice/NetworkService/Channels/Channel/Se
nding/DontRoute

Format boolean
Dimension n.a
Default value true
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
215
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.11.11 Element Scheduling
This element specifies the scheduling policies used to control the transmitter thread
of the current Channel.

4.4.1.5.1.11.11.1 Element Class
This element specifies the thread scheduling class that will be used by the
transmitter thread. The user may need the appropriate privileges from the
underlying operating system to be able to assign some of the privileged scheduling
classes.

Full Path OpenSplice/NetworkService/Channels/Channel/Se
nding/TimeToLive

Format unsigned integer
Dimension n.a
Default value 0
Valid values 0-255
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Sending/Scheduling

Occurrences (min-max) 0 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channel/Channels/
Sending/Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
216
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.11.11.2 Element Priority
This element specifies the thread priority that will be used by the transmitter thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.4.1.5.1.11.11.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.4.1.5.1.12 Element Receiving
This element describes all properties for the receiving side of the Channel.

Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channel/Channels/
Sending/Scheduling/Priority

Format integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/NetworkService/Channel/Channels/
Sending/Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false
217
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.1 Element CrcCheck
This configuration element protects OpenSplice network packets from malicious
attacks. CRCs (Cyclic Redundancy Checks) are specifically designed to protect
against common types of errors on communication channels. When enabled, the
integrity of delivered network packets from one DDS process to another is assured.
There is a small performance cost associated with the use of this feature due to the
addtional overhead of carrying out the CRC calculations.
When the receiving side is enabled only network packets that contain a valid crc
field are accepted.

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving

Occurrences (min-max) 0 - 1
Child-elements Element CrcCheck

Element ReceiveBufferSize
Element Scheduling
Element DefragBufferSize
Element SMPOptimization
Element MaxReliabBacklog
Element PacketRetentionPeriod
Element ReliabilityRecoveryPeriod

Required attributes <none>
Optional attributes <none>

Full Path OpenSplice/NetworkService/Channel/Channels/
Receiving/CrcCheck

Format boolean
Dimension n/a
Default value false
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
218
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.2 Element ReceiveBufferSize
The UDP receive buffer of the Channel socket is set to the value given. If many
message are lost, the receive buffer size has to be increased.
The human-readable option lets the user postfix the value with K(ilobyte),
M(egabyte) or G(igabtye). For example, 10M results in 10485760 bytes.

4.4.1.5.1.12.3 Element Scheduling
This element specifies the scheduling policies used to control the receiver thread of
the current Channel.

4.4.1.5.1.12.3.1 Element Class
This element specifies the thread scheduling class that will be used by the receiver
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/ReceiveBufferSize

Format unsigned integer, human-readable
Dimension bytes
Default value 1000000
Valid values depends on operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
219
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.3.2 Element Priority
This element specifies the thread priority that will be used by the receiver thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.4.1.5.1.12.3.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channel/Channels/
Receiving/Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
220
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.4 Element DefragBufferSize
The maximum number of Fragment buffers that will be allocated for this channel.
These buffers are used to store incoming fragments waiting to be processed, as well
as fragments that are being processed.
With respect to very large messages be aware that the number of buffers times the
fragment size must be sufficient to process the messages otherwise they will be
dropped. (See also Section 4.4.1.5.1.8, Element FragmentSize, on page 209.)

4.4.1.5.1.12.5 Element SMPOptimization
This option will distribute the processing done for incoming fragements over
multiple threads, which will lead to an improved throughput on SMP nodes.

Full path OpenSplice/NetworkService/Channel/Channels/
Receiving/Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/DefragBufferSize

Format unsigned integer
Dimension fragments
Default value 5000
Valid values 500 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/SMPOptimization

Occurrences (min-max) 0 - 1
221
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.5.1 Attribute enabled
This attribute toggles the Optimization on or off.

4.4.1.5.1.12.6 Element MaxReliabBacklog
This element specifies the maximum number of received fragments maintained in
the channel from a single sender for the purpose of order preservation because an
earlier fragment from that sender is missing. A sender is disconnected and all
maintained fragments are discarded when this number is exceeded. Future
fragments from this sender are only accepted after a disconnect if reconnection is set
to true (see Section 4.4.1.3.2, Element Reconnection, on page 195).

Child-elements <none>
Required attributes Attribute enabled
Optional attributes <none>

Full path OpenSplice/NetworkService/Channel/Channels/
Receiving/SMPOptimization/[@enabled]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/NetworkService/Channels/Channel/
Receiving/MaxReliabBacklog

Format unsigned integer
Dimension fragments
Default value 1000
Valid values 100 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
222
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.1.12.7 Element PacketRetentionPeriod
This element specifies how long received packets are retained by the network
service for its so-called ‘reliability-under-publisher-crash’ extended reliability
protocol. This protocol ensures that a consistent or aligned data-set is received by all
alive (receiving) Network Services, even though some might not have received
some packets at the moment a sender disappears (for whatever reason). The protocol
implies that each node retains sufficient received data so that it can be
(re-)distributed if a sender disappears before all receiving Network Services
‘up-to-date’. When the PacketRetentionPeriod element is set to 0 (the default
value), the alignment amongst receiving Network Services will not occur. To
activate full realibility, this setting must be configured to a time period that exceeds
the worst-case death-detection time as configured for the discovery protocol of the
set of distributed Network Services in the system.

4.4.1.5.1.12.8 Element ReliabilityRecoveryPeriod
This element specifies a timeout period for the alignment phase of the extended
rel iabi l i ty protocol , as explained in sect ion 4.4.1.5.1.12.7, Element
Pack e tRe t e n t i onPer iod . I t on ly ha s an e f f ec t w hen t he r e l a t e d
PacketRetentionperiod is set to a non-zero value. After the specified
reliabilityRecoveryPeriod timeout, any data retained for the purpose of
alignment of receiving Network Services (following the disappearance or crash of a
sending Network Service) will be discarded. The value of this timeout period must
be sufficient to allow for the worst-case alignment-time of any ‘missed’ data by
individual receiving Network Services following the disappearance of a sending
Network Services in the system.

Full Path OpenSplice/NetworkService/Channel/Channels/Re
ceiving/PacketRetentionPeriod

Format unsigned integer
Dimension ms
Default value 0 ms
Valid values 0 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
223
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.5.2 Element AllowedPorts
See also Section 4.4.1.5.1.7, Element AllowedPorts, on page 208.
The AllowedPorts specified on the channels element applies to those channels that
do not have an AllowedPorts element specified.

4.4.1.6 Element Discovery
This element controls various parameters of the Network Services Discovery
mechanism.
Discovery reduces the Network Service configuration and minimizes network
traffic. Without Discovery, data is always sent to the network and all Networking
Services need to configure the addresses1 of all Network Services they need to

Full Path OpenSplice/NetworkService/Channel/Channels/Re
ceiving/ReliabilityRecoverPeriod

Format unsigned integer
Dimension ms
Default value 1000 ms
Valid values 0 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Channels/AllowedPor
ts

Format string containing ports or port ranges seperated by
commas. A port range consists of a lower bound
and an upper bound separated by a minus (-)

Dimension n/a
Default value n/a
Valid values depends on operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
224
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

communicate with. With Discovery, data is only sent to where interest exists and
connectivity is discovered based on a minimum configuration1 (see Section
4.4.1.6.4, Element ProbeList, on page 227).
Discovery is based on a heartbeat mechanism to advertize the service’s availability.
The Network Service starts by announcing its existence by sending heartbeats to the
Global Partition2 which is initially filled with the addresses specified in the
ProbeList; remote Network Services receiving the heartbeat will start sending
heartbeats in return. All Network Services that discover new heartbeats will
automatically request address information that match their Scope (see Section
4.4.1.6.2, Attribute Scope, on page 226) from the Network Service sending the
heartbeat, and add the retrieved address information to their Global Partition.
Currently only uni-cast addresses are exchanged. Addresses are removed from the
Global Partition when a remote Network Service stops and heartbeats are no longer
received.

4.4.1.6.1 Attribute enabled
This element can be used to enable or disable Discovery. In case Discovery is
disabled, entities will only detect each others presence implicitly once messages are
received for the first time.

1. This can be multicast addresses and/or uni-cast addresses, especially in an uni-cast
environment with many nodes the configuration of the Network Service’s lists can be
cumbersome.

1. Only a subset of addresses of nodes are initially specified, these nodes are assumed to be
available as a discovery source, all nodes will make themselves known to these discovery
nodes and thereby making its existence and address available for all other nodes.

2. The Global Partition contains all the addresses that the Network Service communicate
with.

Full path OpenSplice/NetworkService/Discovery
Occurrences (min-max) 0 - 1
Child-elements Element PortNr

Element ProbeList
Element Sending
Element Receiving

Required attributes <none>
Optional attributes Attribute enabled

Attribute Scope
225
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.2 Attribute Scope
This attribute implements a comma-separated list of string-matching expressions
allowed to contain wild-card symbols.
Network Services that are not preconfigured but are discovered by receiving their
heartbeats can dynamically join the Global Partition and participate in the
communication space if the Role of the discovered Network Service matches one of
the string expressions of this attribute (see Section 4.2.4, Element Role, on page 97).

4.4.1.6.3 Element PortNr
This element specifies the Port number used by Discovery.

Full path OpenSplice/NetworkService/Discovery[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false

Full path OpenSplice/NetworkService/Discovery[@Scope]
Format String
Dimension n/a
Default value n/a
Valid values any string
Required false

Full path OpenSplice/NetworkService/Discovery/PortNr
Format unsigned integer
Dimension n/a
Default value 3369
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
226
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.4 Element ProbeList
This element contains a list of addresses that is added to the Global Partition at
startup. So discovery heartbeats are sent to these addresses and any Network
Services available at these addreses will subsequently exchange discovered
addresses according to the Discovery mechanism (see Section 4.4.1.6, Element
Discovery, on page 224). Multiple ProbeList addresses can be entered by separating
them with commas (,), semicolons (;), or spaces (). The addresses can be entered as
‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’ IPv6 notation or as the
symbolic hostname, in which case the middleware will try to resolve the
corresponding IP address

4.4.1.6.5 Element Sending
This element describes all properties for transmitting Discovery heartbeats.

Full path OpenSplice/NetworkService/Discovery/ProbeList
Format String
Dimension n/a
Default value

Valid values any string
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Sending
Occurrences (min-max) 0 - 1
Child-elements Element Interval

Element SafetyFactor
Element SalvoSize
Element Scheduling

Required attributes <none>
Optional attributes <none>
227
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.5.1 Element Interval
This element specifies the interval at which heartbeats will be sent. This interval is
also communicated as part of a heartbeat to remote Network Services so they know
when to expect the next heartbeat.

4.4.1.6.5.2 Element SafetyFactor
The SafetyFactor is used to set a margin (< 1) on the expected heartbeat interval.
The actual interval at which the heartbeats are sent is the specified interval
multiplied by this factor, so the actual interval will be equal to or smaller than the
specified value. This can be used to avoid timing issues such as those caused by
typical scheduling or network latencies.

Full path OpenSplice/NetworkService/Discovery/Sending/
Interval

Format unsigned integer
Dimension milliseconds
Default value 333
Valid values 100 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Sending/
SafetyFactor

Format float
Dimension n/a
Default value 0.9
Valid values 0.2 - 1.0
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
228
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.5.3 Element SalvoSize
The reactivity of discovery depends on the heartbeat frequency, a higher heartbeat
frequency gives a faster reactivity but also imposes a higher network load, which is
not desirable. Ideally the heartbeat frequency must be kept as low as possible but
from a startup (and shutdown) perspective a high reactivity is often desired. So the
Network Service has the capability to send an additional salvo of heartbeats at
startup and shutdown at ten times the normal heartbeat speed to maximize reactivity
during these phases without requiring a continuous high heartbeat frequency. The
SalvoSize sets the number of messages to send during these phases.

4.4.1.6.5.4 Element Scheduling
This element specifies the scheduling policies used to control the Discovery
transmit thread.

4.4.1.6.5.4.1 Element Class
This element specifies the thread scheduling class that will be used by the Discovery
transmit thread. The user may need the appropriate privileges from the underlying
operating system to be able to assign some of the privileged scheduling classes.

Full path OpenSplice/NetworkService/Discovery/Sending/
SalvoSize

Format unsigned integer
Dimension n/a
Default value 3
Valid values 1 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Sending/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
229
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.5.4.2 Element Priority
This element specifies the thread priority that will be used by the Discovery
transmit thread. Only priorities that are supported by the underlying operating
system can be assigned to this element. The user may need special privileges from
the underlying operating system to be able to assign some of the privileged
priorities.

4.4.1.6.5.4.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/NetworkService/Discovery/Sending/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Sending/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
230
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.6 Element Receiving
The Receiving element describes all Discovery properties for processing received
heartbeats.

4.4.1.6.6.1 Element DeathDetectionCount
A Network Service has a configured heartbeat interval period meaning that after that
period a new heartbeat will be sent (see Section 4.4.1.6.5.1, Element Interval, on
page 228). This element specifies the number of times the interval period must pass
without receiving a new heartbeat to consider the remote Domain Service to be
dead1.

Full path OpenSplice/NetworkService/Discovery/Sending/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/NetworkService/Discovery/Receiving
Occurrences (min-max) 0 - 1
Child-elements Element DeathDetectionCount

Element ReceiveBufferSize
Element Scheduling

Required attributes <none>
Optional attributes <none>

1. A Domain Service is also considered dead if communication fails and the Domain
Service is no longer visible.

Full path OpenSplice/NetworkService/Discovery/Receiving/
DeathDetectionCount

Format unsigned integer
Dimension n/a
Default value 6
Valid values 1 - maxInt
231
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.6.2 Element ReceiveBufferSize
The UDP receive buffer of Discovery is set to the value given. If many message are
lost, the receive buffer size has to be increased.

4.4.1.6.6.3 Element Scheduling
This element specifies the scheduling policies used to control the receiver thread of
Discovery.

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Receiving/
ReceiveBufferSize

Format unsigned integer
Dimension bytes
Default value 1000000
Valid values depends on operating system
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Receiving/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
232
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.6.3.1 Element Class
This element specifies the thread scheduling class that will be used by the receiver
thread of Discovery heartbeats. The user may need the appropriate privileges from
the underlying operating system to be able to assign some of the privileged
scheduling classes.

4.4.1.6.6.3.2 Element Priority
This element specifies the thread priority that will be used by the receiver thread of
Discovery hearbeats. Only priorities that are supported by the underlying operating
system can be assigned to this element. The user may need special privileges from
the underlying operating system to be able to assign some of the privileged
priorities.

Full path OpenSplice/NetworkService/Discovery/Receiving/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Discovery/Receiving/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
233
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.6.6.3.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.4.1.7 Element Tracing
This element controls the amount and type of information that is written into the
tracing log by the Network Service. This is useful to track the Network Service
during application development. In the runtime system it should be turned off.

4.4.1.7.1 Element OutputFile
This option specifies where the logging is printed to. Note that “stdout” is
considered a legal value that represents “standard out”.

Full path OpenSplice/NetworkService/Discovery/Receiving/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/NetworkService/Tracing
Occurrences (min-max) 0 - 1
Child-elements Element OutputFile

Element Timestamps
Element Categories

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/OutputFile
Format string
Dimension file name
Default value networking.log
Valid values depends on operating system.
Occurrences (min-max) 0 - 1
234
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.2 Element Timestamps
This element specifies whether the logging must contain timestamps.

4.4.1.7.2.1 Attribute Absolute
This attribute specifies whether the timestamps are absolute or relative to the startup
time of the service.

4.4.1.7.3 Element Categories
This element contains the logging properties for various categories.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Timestamps
Format boolean
Dimension n/a
Default value true
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute Absolute

Full path OpenSplice/NetworkService/Tracing/Timestamps[
@absolute]

Format boolean
Dimension

Default value true
Valid values true, false
Required false
235
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.1 Element Default
This element specifies the tracing level used for categories that are not explicitly
specified. Level 0 indicates no tracing, level 6 indicates the most detailed level of
tracing.

4.4.1.7.3.2 Element Configuration
This element specifies the tracing level for the Configuration category. This
includes the processing of all NetworkService parameters in the config file. Level 0
indicates no tracing, level 6 indicates the most detailed level of tracing.

Full path OpenSplice/NetworkService/Tracing/Categories
Occurrences (min-max) 0 - 1
Child-elements Element Default

Element Configuration
Element Construction
Element Destruction
Element Mainloop
Element Groups
Element Send
Element Receive
Element Throttling
Element Test
Element Discovery

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Default

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
236
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.3 Element Construction
This element specifies the tracing level for the Construction category. This includes
the creation of all internal processing entities. Level 0 indicates no tracing, level 6
indicates the most detailed level of tracing.

4.4.1.7.3.4 Element Destruction
This element specifies the tracing level for the Destruction category. This includes
the destruction of all internal processing entities when the NetworkService
terminates. Level 0 indicates no tracing, level 6 indicates the most detailed level of
tracing.

Full path OpenSplice/NetworkService/Tracing/Categories
/Configuration

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Construction

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
237
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.5 Element Mainloop
This element specifies the tracing level for the Mainloop category. This includes
information about each of the threads spawned by the NetworkService. Level 0
indicates no tracing, level 6 indicates the most detailed level of tracing.

4.4.1.7.3.6 Element Groups
This element specifies the tracing level for the Groups category. This includes the
management of local groups (partition-topic combinations). Level 0 indicates no
tracing, level 6 indicates the most detailed level of tracing.

Full path OpenSplice/NetworkService/Tracing/Categories
/Destruction

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Mainloop

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
238
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.7 Element Send
This element specifies the tracing level for the Send category. This includes
information about outgoing data. Level 0 indicates no tracing, level 6 indicates the
most detailed level of tracing.

4.4.1.7.3.8 Element Receive
This element specifies the tracing level for the Receive category. This includes
information about incoming data. Level 0 indicates no tracing, level 6 indicates the
most detailed level of tracing.

Full path OpenSplice/NetworkService/Tracing/Categories
/Groups

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Send

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
239
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.9 Element Throttling
This element specifies the tracing level for the Throttling category. This includes
information about incoming data. Level 0 indicates no tracing, level 6 indicates the
most detailed level of tracing.

4.4.1.7.3.10 Element Test
This element specifies the tracing level for the Test category. This is a reserved
category used for testing purposes. Level 0 indicates no tracing, level 6 indicates the
most detailed level of tracing.

Full path OpenSplice/NetworkService/Tracing/Categories
/Receive

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Throttling

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
240
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.7.3.11 Element Discovery
This element specifies the tracing level for the Discovery category. This includes all
activity related to Discovery. Level 0 indicates no tracing, level 6 indicates the most
detailed level of tracing.

4.4.1.8 Element Compression
This element contains configuration for compression in the Network Service.

Full path OpenSplice/NetworkService/Tracing/Categories
/Test

Format unsigned integer
Dimension

Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Tracing/Categories
/Discovery

Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 6
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/NetworkService/Compression
Occurrences (min-max) 0 - 1
241
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.1.8.1 Attribute PluginLibrary
This attribute specifies a library to load at run time, in which a compression plugin
may be found.

4.4.1.8.2 Attribute PluginInitFunction
This attribute specifies the name of a compression plugin initialisation function, or
the name of one of the built-in compressors.

4.4.1.8.3 Attribute PluginParameter
This attribute specifies a parameter that is to be passed to a compressor. The
interpretation of this may vary from one compressor to another.

Child-elements <none>
Required attributes <none>
Optional attributes Attribute PluginLibrary

Attribute PluginInitFunction
Attribute PluginParameter

Full path OpenSplice/NetworkService/Compression[@Plugi
nLibrary]

Format string
Dimension n/a
Default value “” (empty string)
Valid values any string
Required false

Full path OpenSplice/NetworkService/Compression[@Plugi
nInitFunction]

Format string
Dimension n/a
Default value “” (empty string)
Valid values any string
Required false
242
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2 The Secure Network Service
The Secure Network Service is an extended version of the Network Service (see
Section 4.4.1, The Network Service, on page 189) which adds security capabilities to
the communication between DDS service instances. The Secure Network Service
provides for secure communication between the DDS service instances by using
encryption of the data that is being exchanged by using a configurable cipher.
Besides encryption the Secure Network Service provides authentication and access
control of the data that is being exchanged between the DDS service instances.
The Secure Network Service is selected by using the following configuration
element to the Domain section of the configuration file (see Section 4.2.10, Element
Application, on page 111).

<Service name="snetworking">
 <Command>snetworking</Command>
</Service>

All the configuration settings that apply to the Network Service also apply to the
Secure Network Service. Thus all the configuration parameters that are discussed in
Section 4.4.1, The Network Service) also apply to the Secure Network Service.
This section will only discuss the additional configuration parameters that are
applicable to the Secure Network Service.
The Secure Network Service configuration expects a root element named
OpenSplice/SNetworkService, so when configuring the Secure Network
Service you must use this root element.

4.4.2.1 Element Partitioning
The OpenSplice Secure Network Service is capable of leveraging the network’s
multicast and routing capabilities. If some a priori knowledge about the
participating nodes and their topic and partition interest is available, then the
Network Services in the system can be explicitly instructed to use specific unicast or
multicast addresses for its network traffic. This is done by means of so-called
network partitions.

Full path OpenSplice/NetworkService/Compression[@Plugi
nParameter]

Format string
Dimension n/a
Default value “” (empty string)
Valid values any string
Required false
243
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

A network partition is defined by one or more unicast, multicast or broadcast IP
addresses. Any Secure Network Service that is started will read the network
partition settings and, if applicable, join the required multicast groups. For every
sample distributed by the Secure Network Service, both its partition and topic name
will be inspected. In combination with a set of network partition mapping rules, the
service will determine which network partition the sample is written to. The
mapping rules are configurable as well.
Using network configuration, nodes can be disconnected from any network
partition. If a node is connected via a low speed interface, it is not capable of
receiving high volume data. If the DCPS partitioning is designed carefully, high
volume data is published into a specific partition, which in its turn is mapped onto a
specific network partition, which is itself only connected to those nodes that are
capable of handling high volume data.

4.4.2.1.1 Element GlobalPartition
In the context of the Secure Network Service the GlobalPartition element (see
Section 4.4.1.4.1, Element GlobalPartition, on page 197) has an additional optional
attribute named SecurityProfile.

4.4.2.1.1.1 Attribute Address
See Section 4.4.1.4.1.1, Attribute Address, on page 197 for a full description of this
attribute.

Full path OpenSplice/SNetworking/Partitioning
Occurrences (min-max) 0 - 1
Child-elements Element GlobalPartition

Element NetworkPartitions
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/SNetworking/Partitioning/
GlobalPartition

Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes Attribute Address
Optional attributes Attribute SecurityProfile
244
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.1.1.2 Attribute SecurityProfile
In the context of the Secure Network Service, the GlobalPartition element provides
support for the attribute SecurityProfile. The attribute references a security profile
declared in the context of the Security element. If the given reference is invalid, the
global partition configuration is invalid. In this case, the partition will be blocked to
prevent unwanted information leaks. A configuration error message will be logged
to the ospl-error.log file. If the security feature has been enabled, but no profile
is declared, then the NULL profile is used by default; this means that no security is
added to the transport.

4.4.2.1.2 Element NetworkPartitions
Network configuration can contain a set of network partitions, which are grouped
under the NetworkPartitions element.

Full path OpenSplice/SNetworking/Parti t ioning/GlobalParti t ion
[@Address]

Format ‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’
IPv6 address, symbolic host name or “broadcast”

Dimension n/a
Default value "broadcast"
Valid values "broadcast", any ‘dotted decimal’ IPv4 or ‘colon-separated

hexadecimal’ IPv6 unicast or multicast address, or a
resolvable symbolic hostname

Required true
Remarks The given interface should have the required capabilities,

e.g. broadcasting or multicasting

Full path OpenSplice/SNetworking/Partitioning/NetworkPartitions/
GlobalPartition[@SecurityProfile]

Format string
Dimension n/a
Default value nullProfile
Valid values any valid Security Profile name
Required false
245
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.1.2.1 Element NetworkPartition
In the context of the Secure Network Service the NetworkPartition element (see
Section 4.4.1.4.2.1, Element NetworkPartition, on page 198) has an additional
optional attribute named SecurityProfile.

4.4.2.1.2.1.1 Attribute Address
See Section 4.4.1.4.2.1.1, Attribute Address, on page 199 for a full description of
this attribute.

Full path OpenSplice/SNetworking/Partitioning/
NetworkPartitions

Occurrences (min-max) 0 - 1
Child-elements Element NetworkPartition
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/SNetworking/Partitioning/
NetworkPartitions/NetworkPartition

Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes Attribute Address

Attribute Connected
Optional attributes Attribute SecurityProfile

Full path OpenSplice/SNetworking/Partitioning/NetworkPartitions/
NetworkPartition[@Address]

Format ‘dotted decimal’ IPv4 or ‘colon-separated hexadecimal’
IPv6 address, symbolic host name or "broadcast"

Dimension n/a
Default value "broadcast"
Valid values "broadcast", any ‘dotted decimal’ IPv4 or ‘colon-separated

hexadecimal’ IPv6 unicast or multicast address or resolvable
symbolic hostname

Required true
Remarks The given interface should have the required capabilities,

e.g. broadcasting or multicasting.
246
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.1.2.1.2 Attribute Connected
See Section 4.4.1.4.2.1.2, Attribute Connected, on page 199 for a full description of
this attribute.

4.4.2.1.2.1.3 Attribute SecurityProfile
In the context of the Secure Network Service, the NetworkPartition element
provides support for the attribute SecurityProfile. The attribute references a
securityprofile declared in the context of the Security element. If the given reference
is invalid, the network partition configuration is invalid. In this case the partition
will be blocked to prevent unwanted information leaks. A configuration error
message will be logged to the ospl-error.log file. If the security feature has
been enabled but no profile is declared, the NULL profile will be used by default.
The ordering of network partition declarations in the OSPL configuration file must
be the same for all nodes within the OpenSplice domain. If certain nodes shall not
use one of the network partitions, the network partition in question must be declared
as connected = ‘false’. In this case the declared security profile would not be
evaluated or initialized, and the associated secret cipher keys need not to be defined
for the OpenSplice node in question.

Full path OpenSplice/SNetworking/Partitioning/NetworkPartitions/
NetworkPartition[@Connected]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/SNetworking/Partitioning/NetworkPartitions/N
etworkPartition[@SecurityProfile]

Format string
Dimension n/a
Default value nullProfile
Valid values any valid Security Profile name
Required false
247
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2 Element Security
This element is only relevant for the Secure Network Service and the normal
(non-secure) Network Service will ignore this element. Note that the Secure
Network Service also will behave like the normal Network Service if no Security
element or an empty Security element is specified.

4.4.2.2.1 Attribute enabled
This is an optional attribute. If not defined it defaults to true and all network
partitions, if not specified otherwise, will be encoded using the NULL cipher. The
NULL cipher does not provide for any level of integrity or confidentiality; message
items will be sent unencrypted. If enabled = ‘false’ the security feature will not be
activated, and the Network Service acts like any other OpenSplice node not being
security aware. Security profiles defined in the configuration file will not take
effect, but will cause the system to log warnings.

4.4.2.2.2 Element SecurityProfile
This element defines the security profile which can be applied to one or more
network partitions. This element is optional.

Full path OpenSplice/SNetworking/Security
Occurrences (min-max) 0 - 1
Child-elements Element SecurityProfile

Element AccessControl
Element Authentication

Required attributes <none>
Optional attributes Attribute enabled

Full path OpenSplice/SNetworking/Security[@enabled]
Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false

Full path OpenSplice/SNetworking/Security/ SecurityProfile
Occurrences (min-max) 0 - *
248
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2.2.1 Attribute Name
This is a mandatory attribute. The name must be unique for all Security Profiles
being declared. If the name is not specified, the security profile will be ignored as it
cannot be referenced anyway.

4.4.2.2.2.2 Attribute Cipher
This is a mandatory attribute. Depending on the declared cipher, the cipher key must
have a specific length (128 bits, 192 bits, or 256 bits) or none at all. The following
case-insensitive values are supported by the current implementation:
• aes128, implements AES cipher with a 128-bit cipher-key (16 Bytes, 32

hexadecimal characters). This cipher will occupy 34 bytes of each UDP packet
being sent.

• aes192, implements the AES cipher with a 192-bit cipher-key (24 Bytes, 48
hexadecimal characters). This cipher will occupy 34 bytes of each UDP packet
being sent.

• aes256, implements the AES cipher with a 256-bit cipher-key (32 Bytes, 64
hexadecimal characters. This cipher will occupy 34 bytes of each UDP packet
being sent.

• blowfish, implements the Blowfish cipher with a 128-bit cipher-key (16 Bytes, 32
hexadecimal characters). This cipher will occupy 26 bytes of each UDP packetb
eing sent.

• null, implements the NULL cipher. The only cipher that does not require a
cipher-key. This cipher will occupy 4 bytes of each UDP packet being sent.

Child-elements <none>
Required attributes Attribute Name

Attribute Cipher
Attribute cipherKey

Optional attributes <none>

Full path OpenSplice/SNetworking/Security/
SecurityProfile[@Name]

Format string
Dimension n/a
Default value “aSecurityProfile”
Valid values any string
Required true
249
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

All ciphers except for the NULL cipher are combined with SHA1 to achieve data
integrity. Also, the rsa- prefix can be added to the ciphers. In this case, digital
signatures using RSA will be available.

4.4.2.2.2.3 Attribute cipherKey
The cipherKey attribute is used to define the secret key required by the declared
cipher. The value can be a URI referencing an external file containing the secret key,
or the secret key can be defined in-place directly as a string value.
The key must be defined as a hexadecimal string, each character representing 4 bits
of the key, for example. 1ABC represents the 16-bit key 0001 1010 1011 1100.
The key must not follow a well-known pattern and must match exactly the key
length required by the chosen cipher. In case of malformed cipher-keys, the security
profile in question will be marked as invalid. Moreover, each network partition
referring to the invalid Security Profile will not be operational and thus traffic will
be blocked to prevent information leaks. As all OpenSplice applications require read
access to the XML configuration file, for security reasons it is recommended to
store the secret key in an external file in the file system, referenced by the URI in the
configuration file. The file must be protected against read and write access from
other users on the host. Verify that access rights are not given to any other user or
group on the host.
Alternatively, storing the secret key in-place in the XML configuration file will give
read/write access to all DDS applications joining the same OpenSplice node.
Because of this, the ‘in-place’ method is strongly discouraged.

Full path OpenSplice/SNetworking/Security/
SecurityProfile[@Cipher]

Format string
Dimension n/a
Default value “null”
Valid values aes128, aes192, aes256, blowfish, rsa-aes128, rsa-aes192,

rsa-aes256, rsa-blowfish, null
Required true

Full path OpenSplice/SNetworking/Security/
SecurityProfile[@cipherKey]

Format string
Dimension n/a
250
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2.3 Element AccessControl
The optional AccessControl element defines settings for access control enforcement
and which access control module shall be used.

4.4.2.2.3.1 Attribute enabled
The access control feature will be activated when enabled = ‘true’.

4.4.2.2.3.2 Attribute policy
The policy attribute references a file containing the access control policy.

Default value “” (empty string)
Valid values any string of the correct length
Required true

Full path OpenSplice/SNetworking/Security/ AccessControl
Occurrences (min-max) 0 - 1
Child-elements Element AccessControlModule
Required attributes <none>
Optional attributes Attribute enabled

Attribute policy

Full path OpenSplice/SNetworking/Security/
AccessControl[@enabled]

Format boolean
Dimension n/a
Default value false
Valid values true, false
Required false

Full path OpenSplice/SNetworking/Security/
AccessControl[@policy]

Format string
Dimension n/a
Default value “” (empty string)
Valid values any valid policy name
Required false
251
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2.3.3 Element AccessControlModule
The AccessControlModule element determines which access control module(s) will
be used. More than one module may be defined. All defined and enabled modules
will be used to determine whether access should be granted.

4.4.2.2.3.3.1 Attribute enabled
The module specified in the type attribute is used to evaluate access control rules
when enabled = ‘true’.

4.4.2.2.3.3.2 Attribute type
The type attribute defines the access control model type. Currently, OpenSplice only
supports mandatory access control; accordingly the only valid value for this
attribute is ‘MAC’.

Full path OpenSplice/SNetworking/Security/
AccessControl/AccessControlModule

Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes <none>
Optional attributes Attribute enabled

Attribute type

Full path OpenSplice/SNetworking/Security/AccessControl/
AccessControlModule[@enabled]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false

Full path OpenSplice/SNetworking/Security/AccessControl/
AccessControlModule[@type]

Format string
Dimension n/a
Default value “none”
Valid values “MAC”
Required false
252
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2.4 Element Authentication
The optional Authentication element defines whether additional sender
authorization shall be performed. Enabling Authentication requires that a cipher,
including RSA (such as rsa-aes256), is used.

4.4.2.2.4.1 Attribute enabled
Authentication is performed when enabled is set to ‘true’.

4.4.2.2.4.2 Element X509Authentication
The X509Authentication element defines where keys and certificates required for
X509 authentication may be found.

4.4.2.2.4.2.1 Element Credentials
The Credentials element is an optional element. If it is missing, then the node does
not sign messages (in other words, it does not send credentials).

Full path OpenSplice/SNetworking/Security/ Authentication
Occurrences (min-max) 0 - 1
Child-elements Element X509Authentication
Required attributes <none>
Optional attributes Attribute enabled

Full path OpenSplice/SNetworking/Security/
Authentication[@enabled]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false

Full path OpenSplice/SNetworking/Security/
Authentication/X509Authentication

Occurrences (min-max) 0 - 1
Child-elements Element Credentials

Element TrustedCertificates
Required attributes <none>
Optional attributes <none>
253
Deploying OpenSplice DDS�������	

4 Service Configuration 4.4 The Network and the Secure Network Service

4.4.2.2.4.2.1.1 Element Key
The Key element references the file containing the key. It is recommended that the
absolute path is used. A relative path will be interpreted relative to the directory
from which the OpenSplice daemon is started.

4.4.2.2.4.2.1.2 Element Cert
The Cert element references the file containing the certificate. It is recommended
that the absolute path is used. A relative path will be interpreted relative to the
directory from which the OpenSplice daemon is started.

Full path OpenSplice/SNetworking/Security/
Authentication/X509Authentication/Credentials

Occurrences (min-max) 0 - 1
Child-elements Element Key

Element Cert
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/SNetworking/Security/
Authentication/X509Authentication/
Credentials/Key

Occurrences (min-max) 1 - 1
Child-elements

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/SNetworking/Security/
Authentication/X509Authentication/
Credentials/Cert

Occurrences (min-max) 1 - 1
Child-elements

Required attributes <none>
Optional attributes <none>
254
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.4.2.2.4.2.2 Element TrustedCertificates
The TrustedCertificates element references a file containing the trusted certificates.
It is recommended that the absolute path is used. A relative path will be interpreted
relative to the directory from which the OpenSplice daemon is started. Since the file
is looked for on the local file system, it will accept a file name in the notation that is
supported by that particular Operating System.

4.5 The Tuner Service
The TunerService configuration determines how the Tuner Service handles the
i nc o m i n g c l i e n t c on ne c t i o n s . I t e x p e c t s a r o o t e l e m e n t n a m e d
OpenSplice/TunerService, in which several child-elements may be specified.
Each of these are listed and explained.

Full path OpenSplice/SNetworking/Security/
Authentication/X509Authentication/
TrustedCertificates

Format string
Dimension n/a
Default value “” (empty string)
Valid values valid path to certificate file(s)
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService
Occurrences (min-max) 0 - *
Child-elements Element Client

Element Server
Element GarbageCollector
Element LeaseManagement
Element Watchdog

Required attributes Attribute name
Optional attributes <none>
255
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.1 Attribute name
This attribute identifies a configuration for the Tuner Service by name. Multiple
Tuner Service configurations can be specified in one single resource file. The actual
applicable configuration is determined by the value of the name attribute, which
m u s t m a t c h t h e o n e s p e c i f i e d u n d e r t h e a t t r i b u t e
OpenSplice/Domain/Application[@name] in the configuration of the Domain
Service.

4.5.2 Element Client
This element determines how the Tuner service handles the incoming client
connections.

4.5.2.1 Element LeasePeriod
This element determines the maximum amount of time in which a connected client
must update its lease. This can be done implicitly by calling any function or
explicitly by calling the update lease function. The Tuner tool will automatically
update its lease when it is connected to the Tuner Service. This ensures that all
resources are cleaned up automatically if the client fails to update its lease within
this period.

Full path OpenSplice/TunerService[@name]
Format string
Dimension n/a
Default value cmsoap
Valid values any string
Required true

Full path OpenSplice/TunerService/Client
Occurrences (min-max) 0 - 1
Child-elements Element LeasePeriod

Element MaxClients
Element MaxThreadsPerClient
Element Scheduling

Required attributes <none>
Optional attributes <none>
256
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.5.2.2 Element MaxClients
This element determines the maximum allowed number of clients that are allowed
to be concurrently connected to the Tuner Service. Clients are identified by
IP-address.

4.5.2.3 Element MaxThreadsPerClient
This element specifies the maximum number of threads that the Tuner Service will
create for one specific client. The number of threads determines the maximum
number of concurrent requests for a client.

Full path OpenSplice/TunerService/Client/LeasePeriod
Format float
Dimension seconds
Default value 15.0
Valid values 10.0 - maxFloat
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Client/MaxClients
Format unsigned integer
Dimension n/a
Default value 2
Valid values 1 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Client/
MaxThreadsPerClient

Format unsigned integer
Dimension n/a
Default value 2
257
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.2.4 Element Scheduling
This element specifies the scheduling policies used to control the threads that handle
the client requests to the Tuner Service.

4.5.2.4.1 Element Class
This element specifies the thread scheduling class that will be used by the threads
that handle client requests to the Tuner Service. The user may need the appropriate
privileges from the underlying operating system to be able to assign some of the
privileged scheduling classes.

Valid values 1 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Client/Scheduling
Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Client/Scheduling/Class
Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>
258
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.5.2.4.2 Element Priority
This element specifies the thread priority that will be used by the threads that handle
client requests to the Tuner Service. Only priorities that are supported by the
underlying operating system can be assigned to this element. The user may need
special privileges from the underlying operating system to be able to assign some of
the privileged priorities.

4.5.2.4.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.5.3 Element Server
This element determines the server side behaviour of the Tuner Service.

Full path OpenSplice/TunerService/Client/Scheduling/
Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/TunerService/Client/Scheduling/
Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false
259
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.3.1 Element Backlog
This element determines the maximum number of client requests that are allowed to
be waiting when the maximum number of concurrent requests is reached.

4.5.3.2 Element PortNr
This element specifies the port number that the TunerService will use to listen for
incoming requests. This port number must also be used by the Tuner tool to connect
to this service.
When using the single process option set this value to Auto.

Full path OpenSplice/TunerService/Server
Occurrences (min-max) 0 - 1
Child-elements Element Backlog

Element PortNr
Element Verbosity

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Server/Backlog
Format unsigned integer
Dimension n/a
Default value 5
Valid values 0 - maxInt
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Server/PortNr
Format unsigned integer
Dimension n/a
Default value 8000
Valid values 1 - 65535 (depends on operating system) or

Auto

Occurrences (min-max) 0 - 1
260
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.5.3.3 Element Verbosity
This element specifies the verbosity level of the logging of the service.

4.5.4 Element GarbageCollector
This element specifies the behaviour of the garbage collection thread of the service.

4.5.4.1 Element Scheduling
This element specifies the scheduling policies used to control the garbage collection
thread of the Tuner Service.

Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Server/Verbosity
Format unsigned integer
Dimension n/a
Default value 0
Valid values 0 - 5
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/GarbageCollector
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/GarbageCollection/
Scheduling

Occurrences (min-max) 1 - 1
261
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.4.1.1 Element Class
This element specifies the thread scheduling class that will be used by the garbage
collection thread of the Tuner Service. The user may need the appropriate privileges
from the underlying operating system to be able to assign some of the privileged
scheduling classes.

4.5.4.1.2 Element Priority
This element specifies the thread priority that will be used by the garbage collection
thread of the Tuner Service. Only priorities that are supported by the underlying
operating system can be assigned to this element. The user may need special
privileges from the underlying operating system to be able to assign some of the
privileged priorities.

Child-elements Element Class
Element Priority

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/GarbageCollection/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/GarbageCollection/
Scheduling/ Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
262
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.5.4.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.5.5 Element LeaseManagement
This element specifies the behaviour of the lease management thread of the Tuner
Service.

4.5.5.1 Element Scheduling
This element specifies the scheduling policies used to control the lease management
thread of the Tuner Service.

Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/TunerService/GarbageCollection/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/TunerService/LeaseManagement
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/LeaseManagement/
Scheduling

Occurrences (min-max) 1 - 1
263
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.5.1.1 Element Class
This element specifies the thread scheduling class that will be used by the lease
management thread of the Tuner Service. The user may need the appropriate
privileges from the underlying operating system to be able to assign some of the
privileged scheduling classes.

4.5.5.1.2 Element Priority
This element specifies the thread priority that will be used by the lease management
thread of the Tuner Service. Only priorities that are supported by the underlying
operating system can be assigned to this element. The user may need special
privileges from the underlying operating system to be able to assign some of the
privileged priorities.

Child-elements Element Class
Element Priority

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/LeaseManagement/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/LeaseManagement/
Scheduling/ Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
264
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.5 The Tuner Service

4.5.5.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

4.5.6 Element Watchdog
This element controls the characteristics of the Watchdog thread.

4.5.6.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Full path OpenSplice/TunerService/LeaseManagement/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/TunerService/Watchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Watchdog/ Scheduling
Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>
265
Deploying OpenSplice DDS�������	

4 Service Configuration 4.5 The Tuner Service

4.5.6.1.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.5.6.1.2 Element Priority
This element specifies the thread priority that will be used by the watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.5.6.1.2.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/TunerService/Watchdog/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/TunerService/Watchdog/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind
266
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6 The DbmsConnect Service
The DbmsConnect Service configuration is responsible for DDS to DBMS bridging
and expects a root element named OpenSplice/DbmsConnectService. Within
this root element, the DbmsConnect Service will look for several child-elements.
Each of these is listed and explained.

4.6.1 Attribute name
This attribute identifies the configuration for the DBMS Service by name. Multiple
DBMS Service configurations can be specified in one single resource file. The
actual applicable configuration is determined by the value of the name attribute,
w h i c h m u s t m a t c h t h e o n e s pe c i f i e d u n d e r t h e a t t r i b u t e
OpenSplice/Domain/Application[@name] in the configuration of the Domain
Service.

Full path OpenSplice/TunerService/Watchdog/
Scheduling/Priority[@priority_kind]

Format enumeration
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Occurrences (min-max) 0 - 1
Required false

Full path OpenSplice/DbmsConnectService
Occurrences (min-max) 0 - *
Child-elements Element DdsToDbms

Element DbmsToDds
Element Tracing
Element Watchdog

Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/DBMSConnectService[@name]
Format string
Dimension n/a
267
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2 Element DdsToDbms
This element specifies the configuration properties concerning DDS to DBMS
bridging.

4.6.2.1 Attribute replication_mode
This attribute specifies the default replication mode for all NameSpaces in the
DdsToDbms element.
When replicating databases through DDS, the NameSpace elements in the
DbmsToDds and DdsToDbms elements map a Table and Topic circularly. To prevent
data-modifications from continuously cascading, modifications made by the
DBMSConnect service itself should not trigger new updates in the DBMS nor in the
DDS.
In replication mode, the DbmsConnect service ignores samples that were published
by itself. (Currently this means that everything that is published on the same node as
the DBMSConnect Service is considered to be of DBMSConnect origin and
therefore ignored). That way, replication of changes that were copied from Dbms to
DDS back into Dbms is avoided.
WARNING: This setting does not avoid replication of changes that were copied
from DDS to Dbms back into DDS. For that purpose, the replication_user attribute
of the DbmsToDds or DbmsToDds/NameSpace elements should be set appropriately
as well!

Default value n/a
Valid values any string
Required true

Full path OpenSplice/DBMSConnectService/DdsToDbms
Occurrences (min-max) 0 - 1
Child-elements Element NameSpace
Required attributes <none>
Optional attributes Attribute replication_mode

Full path O p e n S p l i c e / D b m s C on n e c t S e r v i c e /
DdsToDbms[@replication_mode]

Format boolean
Dimension n/a
Default value false
268
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2 Element NameSpace
This element specifies the responsibilities of the service concerning the bridging of
particular data from DDS to DBMS. At least one NameSpace element has to be
present in a DdsToDbms element.

4.6.2.2.1 Attribute dsn
Represents the ODBC Data Source Name, that represents the DBMS where the
service must bridge the DDS data to.

Valid values true, false
Remarks none
Required no

Full path OpenSplice/DBMSConnectService/DdsToDbms/
NameSpace

Occurrences (min-max) 1 - *
Child-elements Element Mapping
Required attributes Attribute dsn

Attribute usr
Attribute pwd

Optional attributes Attribute name
Attribute partition
Attribute topic
Attribute schema
Attribute catalog
Attribute replication_mode
Attribute update_frequency
Attribute odbc

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@dsn]

Format string
Dimension Data source name
Default value n/a
Valid values Any valid DSN
Required true
269
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.2 Attribute usr
Represents the user name that is used when connecting to the DBMS.

4.6.2.2.3 Attribute pwd
Represents the password that is used when connecting to the DBMS.

4.6.2.2.4 Attribute name
The name of the namespace. If not specified, the namespace will be named
“(nameless)”.

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@usr]

Format string
Dimension n/a
Default value n/a
Valid values Any valid username
Required true

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@pwd]

Format string
Dimension n/a
Default value n/a
Valid values Any valid password
Required true

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@name]

Format string
Dimension n/a
Default value (nameless)
Valid values Any valid string
Required false
270
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.5 Attribute partition
This attribute specifies an expression that represents one or more DDS partitions. It
is allowed to use wildcards in the expression: a ‘*’ represents any sequence of
characters and a ‘?’ represents a single character.
This expression is used to specify the partitions from which DDS samples must be
‘bridged’ to the DBMS domain.

4.6.2.2.6 Attribute topic
This attribute specifies an expression that represents one or more DDS topics. It is
allowed to use wildcards in the expression: a ‘*’ represents any sequence of
characters and a ‘?’ represents a single character.
This expression is used to specify the topics from which DDS samples must be
bridged to the DBMS domain. For every matching topic encountered in one or more
of the specified partitions, it creates a separate table in the DBMS. The table name
will match that of the topic, unless specified otherwise in the table attribute of a
Mapping element.

4.6.2.2.7 Attribute schema
This attribute represents the schema that is used when communicating with the
DBMS. The exact schema content may be dependent on the DBMS that is being
used, so consult your DBMS documentation for more details on this subject.

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@partition]

Format string
Dimension n/a
Default value *

Valid values Any valid DDS partition expression
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@topic]

Format string
Dimension n/a
Default value *
Valid values Any valid DDS Topic expression
Required false
271
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.8 Attribute catalog
Represents the catalog that is used when communicating with the DBMS. The exact
catalog content may be dependent on the DBMS that is being used, so consult your
DBMS documentation for more details on this subject.

4.6.2.2.9 Attribute replication_mode
This attribute specifies the replication mode for the current NameSpace element. If
not specified, the value defaults to false.
When replicating databases through DDS, the NameSpace elements in the
DbmsToDds and DdsToDbms elements map a Table and Topic circularly. To prevent
data-modifications from continuously cascading, modifications made by the
DBMSConnect service itself should not trigger new updates in the DBMS.
In replication mode, the DbmsConnect service ignores samples that were published
by itself. (Currently this means that everything that is published on the same node as
the DBMSConnect Service is considered to be of DBMSConnect origin and
therefore ignored). That way, replication of changes that were copied from Dbms to
DDS back into Dbms is avoided.
WARNING: This setting does not avoid replication of changes that were copied
from DDS to Dbms back into DDS. For that purpose, the replication_user attribute
of the DbmsToDds or DbmsToDds/NameSpace elements should be set appropriately
as well!

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@schema]

Format string
Dimension n/a
Default value “” (empty string)
Valid values Any valid string
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@catalog]

Format string
Dimension n/a
Default value “” (empty string)
Valid values Any valid string
Required false
272
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.10 Attribute update_frequency
This attribute specifies the frequency (in Hz) at which the service will automatically
update the DBMS domain with DDS data. The default value of 0.0 means that
updates are only performed when new DDS data arrives (i.e. updating is
‘event-based’).

4.6.2.2.11 Attribute odbc
The service dynamically loads an ODBC library at runtime. This attribute specifies
the name of the ODBC library to be loaded. Platform specific pre- and postfixes and
extensions are automatically added.
If this attribute is not provided, the service will attempt to load the generic ODBC
library. The resulting behaviour is dependent on the platform on which the
DbmsConnect Service is running.

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@replication_mode]

Format boolean
Dimension

Default value false
Valid values true, false
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@update_factor]

Format float
Dimension frequency (Hz)
Default value 0.0
Valid values 0.0 - maxFloat
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@odbc]

Format string
Dimension Library name
Default value Platform dependent
Valid values Any valid library name
Required false
273
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.12 Element Mapping
This element specifies a modification to the way that the service handles a
pre-configured set of data within the specified NameSpace. Its attributes are used to
configure the responsibilities of the service concerning the bridging of data from
DDS to DBMS.

4.6.2.2.12.1 Attribute topic
This attribute specifies the name of the topic where the Mapping applies to. If you
specify no particular topic, it will create tables for all topics.

4.6.2.2.12.2 Attribute table
This attribute specifies an alternative name for the table that must be associated with
the Topic.

Full path OpenSplice/DBMSConnectService/DdsToDbms/
NameSpace/Mapping

Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes Attribute topic
Optional attributes Attribute table

Attribute query
Attribute filter

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace/Mapping[@topic]

Format string
Dimension Topic name
Default value *
Valid values Any valid DDS Topic name
Required true

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace/Mapping[@table]

Format string
Dimension Table name
274
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.2.2.12.3 Attribute query
This attribute specifies an SQL query expression. Only DDS data that matches the
query will be bridged to the DBMS domain. This is realized by means of a DCPS
query condition. The default value is an empty string, representing all available
samples of the selected topic.

4.6.2.2.12.4 Attribute filter
This attribute specifies an SQL content filter. Only DDS data that matches the filter
will be bridged to the DBMS domain. This is realized by means of a DCPS
ContentFilteredTopic. The default value is an empty string, representing all
available samples of the selected topic.

4.6.3 Element DbmsToDds
This element specifies the configuration properties concerning DDS to DBMS
bridging.

Default value “” (empty string)
Valid values Any valid DBMS table name
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace/Mapping[@query]

Format string
Dimension DDS query expression
Default value “” (empty string representing all data of the

specified topic)
Valid values WHERE clause of an SQL expression
Required false

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace/Mapping[@filter]

Format string
Dimension DDS content filter
Default value “” (empty string representing all data of the

specified topic)
Valid values WHERE clause of an SQL expression
Required false
275
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.1 Attribute event_table_policy
This attribute specifies the default setting of the event table policy for all
NameSpace elements in the current DbmsToDds element.
An event table (sometimes referred to as ‘change table’ or ‘shadow table’) is a
support-table that is slaved to an application-table, adding some status flags that are
under the control of a trigger mechanism that responds to creation/modification/
deletion events in the application-table.
The following policies are currently supported:
• FULL: (default) An ‘event table’ will always be created when the service

connects, and will always be deleted when the service disconnects. In this mode,
the service will replace the table if it already exists.

• LAZY: An ‘event table’ will only be created if it is not available when the service
connects, and it will not be deleted when the service disconnects.

• NONE: An ‘event table’ will neither be created nor deleted by the service. For
each specified NameSpace, the service will poll for the existence of a consistent
table with a frequency specified in the coresponding update_frequency attribute. It
will start using the table as soon as it is available. With this policy set, no initial
data will be published regardless of the value of the applicable
publish_initial_data attribute.

Full path OpenSplice/DBMSConnectService/DbmsToDds
Occurrences (min-max) 0 - 1
Child-elements Element NameSpace
Required attributes <none>
Optional attributes Attribute event_table_policy

Attribute publish_initial_data
Attribute replication_user
Attribute trigger_policy

Full path O p e n S p l i c e / D b m s C on n e c t S e r v i c e /
DbmsToDds[@event_table_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no
276
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.2 Attribute publish_initial_data
This attribute specifies the default behaviour with respect to publishing initially
available data in the DBMS to the DDS for all NameSpace elements in the current
DbmsToDds element. If not specified, it defaults to true. The value of this attribute
is ignored when the corresponding event_table_policy is set to NONE.

4.6.3.3 Attribute replication_user
This attribute specifies the default replication user for all NameSpace elements in
the current DdsToDbms element.
When replicating databases through DDS, the NameSpace elements in the
DbmsToDds and DdsToDbms elements map a Table and Topic circularly. To prevent
data-modifications from continuously cascading, modifications made by the service
itself should not trigger new updates in the DBMS nor in the DDS.
To distinguish between DBMS updates coming from an application and DBMS
updates coming from DDS, an extra database user (the replication user) has to be
introduced that differs from the application users. That way, replication of changes
that were copied from DDS to Dbms back into DDS is avoided. The
replication_user attribute specifies the user name of that replication user. An empty
string (default value) indicates that there is no separate replication user.
WARNING: This setting does not avoid replication of changes that were copied
from Dbms to DDS back into Dbms. For that purpose, the replication_mode
attribute of the DssToDbms or DssToDbms/NameSpace elements should be set
appropriately as well!

Full path O p e n S p l i c e /D b m s C o n n e c t S e r v i c e /
DbmsToDds[@publish_initial_data]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no

Full path O p e n S p l i c e /D b m s C o n n e c t S e r v i c e /
DbmsToDds[@replication_user]

Format string
Dimension n/a
277
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.4 Attribute trigger_policy
This attribute specifies the default trigger policy for all NameSpace elements in the
current DbmsToDds element.
Triggers are used to to update the event table in case of creation/modification/
deletion events on the application-table.
The following policies are currently supported:
• FULL: (default) Triggers will always be created when the service connects, and

will always be deleted when the service disconnects. In this mode, the service will
replace the triggers if they already exist.

• LAZY: Triggers will only be created if they are not available when the service
connects, and will not be deleted when the service disconnects.

• NONE: Triggers will neither be created nor deleted by the service. This allows
you to build your own custom triggering mechanism.

4.6.3.5 Element NameSpace
This element specifies the responsibilities of the service concerning the bridging of
data from DBMS to DDS. At least one NameSpace element has to be present in a
DbmsToDds element.

Default value “” (empty string indicating no replication user)
Valid values Any valid SQL user name
Required no

Full path O p e n S p l i c e / D b m s C on n e c t S e r v i c e /
DbmsToDds[@trigger_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no

Full path OpenSplice/DBMSConnectService/DbmsToDds/
NameSpace

Occurrences (min-max) 1 - *
278
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.1 Attribute dsn
Represents the ODBC Data Source Name, that represents the DBMS where the
service must bridge the DDS data from.

4.6.3.5.2 Attribute usr
Represents the user name that is used when connecting to the DBMS.

Child-elements Element Mapping
Required attributes Attribute dsn

Attribute usr
Attribute pwd

Optional attributes Attribute name
Attribute partition
Attribute table
Attribute schema
Attribute catalog
Attribute force_key_equality
Attribute event_table_policy
Attribute publish_initial_data
Attribute replication_user
Attribute trigger_policy
Attribute update_frequency
Attribute odbc

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@dsn]

Format string
Dimension Data source name
Default value n/a
Valid values Any valid DSN
Required true

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@usr]

Format string
Dimension Username
279
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.3 Attribute pwd
Represents the password that is used when connecting to the DBMS.

4.6.3.5.4 Attribute name
The name of the namespace. If not specified, the namespace will be named
"(nameless)".

4.6.3.5.5 Attribute partition
This attribute specifies an expression that represents one or more DDS partitions. It
is allowed to use wildcards in the expression: a ‘*’ represents any sequence of
characters and a ‘?’ represents a single character.
This expression is used to specify the DDS partition(s) where DBMS records will be
written to as DDS samples by the service.

Default value n/a
Valid values Any valid username
Required true

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@pwd]

Format string
Dimension Password
Default value n/a
Valid values Any valid password
Required true

Full path OpenSplice/DbmsConnectService/DdsToDbms/
NameSpace[@name]

Format string
Dimension n/a
Default value (nameless)
Valid values Any valid string
Required false
280
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.6 Attribute table
This attribute specifies an expression that represents one or more DBMS tables. It is
allowed to use wildcards in the expression: a ‘*’ represents any sequence of
characters and a ‘?’ represents a single character.
This expression is used to specify the tables from which DBMS data must be
‘bridged’ to the DDS domain.

4.6.3.5.7 Attribute schema
This attribute represents the schema that is used when communicating with the
DBMS. The exact schema content may be dependent on the DBMS that is being
used, so consult your DBMS documentation for more details on this subject.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@partition]

Format string
Dimension n/a
Default value *

Valid values Any valid DDS partition expression
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@table]

Format string
Dimension n/a
Default value *
Valid values Any Table expression
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@schema]

Format string
Dimension n/a
Default value “” (empty string)
Valid values Any valid string
Required false
281
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.8 Attribute catalog
Represents the catalog that is used when communicating with the DBMS. The exact
catalog content may be dependent on the DBMS that is being used, so consult your
DBMS documentation for more details on this subject.

4.6.3.5.9 Attribute force_key_equality
This attribute specifies the default setting for Mapping elements in the current
NameSpace element with regard to the enforcement of key equality between table
and topic definitions. If true, key definitions from the table and topic must match,
otherwise key definitions may differ.

4.6.3.5.10 Attribute event_table_policy
This attribute specifies the default setting of the event table policy for all Mapping
elements in the current NameSpace element. If not specified, the value defaults to
FULL.
An event table (sometimes referred to as ‘change table’ or ‘shadow table’) is a
support-table that is slaved to an application-table, adding some status flags that are
under the control of a trigger mechanism that responds to creation/modification/
deletion events in the application-table.
The following policies are currently supported:

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@catalog]

Format string
Dimension n/a
Default value “” (empty string)
Valid values Any valid string
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@force_key_equality]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no
282
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

• FULL: An ‘event table’ will always be created when the service connects, and
will always be deleted when the service disconnects. In this mode, the service will
replace the table if it already exists.

• LAZY: An ‘event table’ will only be created if it is not available when the service
connects, and it will not be deleted when the service disconnects.

• NONE: An ‘event table’ will neither be created nor deleted by the service. For
each specified NameSpace, the service will poll for the existence of a consistent
table with a frequency specified in the coresponding update_frequency attribute. It
will start using the table as soon as it is available. With this policy set, no initial
data will be published regardless of the value of the applicable
publish_initial_data attribute.

4.6.3.5.11 Attribute publish_initial_data
This attribute specifies the default behaviour with respect to publishing initially
available data in the DBMS to the DDS for all Mapping elements in the current
NameSpace element. If not specified, the value defaults to true. The value of this
attribute is ignored when the corresponding event_table_policy is set to NONE.

4.6.3.5.12 Attribute replication_user
This attribute specifies the default replication user for all Mapping elements in the
current NameSpace element. If not specified, the value defaults to an empty string.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@event_table_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@publish_initial_data]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no
283
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

When replicating databases through DDS, the NameSpace elements in the
DbmsToDds and DdsToDbms elements map a Table and Topic circularly. To prevent
data-modifications from continuously cascading, modifications made by the service
itself should not trigger new updates in the DBMS nor in the DDS.
To distinguish between DBMS updates coming from an application and DBMS
updates coming from DDS, an extra database user (the replication user) has to be
introduced that differs from the application users. That way, replication of changes
that were copied from DDS to Dbms back into DDS is avoided. The
replication_user attribute specifies the user name of that replication user. An empty
string (default value) indicates that there is no separate replication user.
WARNING: This setting does not avoid replication of changes that were copied
from Dbms to DDS back into Dbms. For that purpose, the replication_mode
attribute of the DssToDbms or DssToDbms/NameSpace elements should be set
appropriately as well!

4.6.3.5.13 Attribute trigger_policy
This attribute specifies the default trigger policy for all Mapping elements in the
current NameSpace element. If not specified, the value defaults to FULL.
Triggers are used to to update the event table in case of creation/modification/
deletion events on the application-table.
The following policies are currently supported:
• FULL: Triggers will always be created when the service connects, and will

always be deleted when the service disconnects. In this mode, the service will
replace the triggers if they already exist.

• LAZY: Triggers will only be created if they are not available when the service
connects, and will not be deleted when the service disconnects.

• NONE: Triggers will neither be created nor deleted by the service. This allows
you to build your own custom triggering mechanism.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@replication_user]

Format string
Dimension n/a
Default value “” (empty string)
Valid values Any valid SQL user name
Required no
284
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.14 Attribute update_frequency
This attribute specifies the frequency (in Hz) at which the service will update the
DDS domain with DBMS data. The default value is 2.0Hz. Event-based updates are
not supported. If 0.0Hz is specified, the default of 2.0Hz will be used.

4.6.3.5.15 Attribute odbc
The service dynamically loads an ODBC library at runtime. This attribute specifies
the name of the ODBC library to be loaded. Platform specific pre- and postfixes and
extensions are automatically added.
If this attribute is not provided, the service will attempt to load the generic ODBC
library. The resulting behaviour is dependent on the platform on which the
DbmsConnect Service is running.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@trigger_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@update_factor]

Format float
Dimension frequency (Hz)
Default value 2.0
Valid values 0.0 - maxFloat
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace[@odbc]

Format string
Dimension Library name
285
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.16 Element Mapping
This element specifies a modification to the way that the service handles a
pre-configured set of data within the specified NameSpace. Its attributes are used to
configure the responsibilities of the service concerning the bridging of data from
DBMS to DDS.

4.6.3.5.16.1 Attribute table
This attribute specifies the name of the table where the Mapping applies to.

4.6.3.5.16.2 Attribute topic
This attribute specifies an alternative name for the topic that must be associated with
the table. By default the topic name is equal to the table name.

Default value Platform dependent
Valid values Any valid library name
Required false

Full path OpenSplice/DBMSConnectService/DbmsToDds/
NameSpace/Mapping

Occurrences (min-max) 0 - *
Child-elements <none>
Required attributes Attribute table
Optional attributes Attribute topic

Attribute query
Attribute force_key_equality
Attribute event_table_policy
Attribute publish_initial_data
Attribute trigger_policy

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@table]

Format string
Dimension Table name
Default value n/a
Valid values Any valid DBMS table name
Required true
286
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.16.3 Attribute query
Optional SQL query expression. Only DBMS data that matches the query will be
bridged to the DDS domain. This is realized by means of a SQL query. The default
value is an empty string, representing all available data in the selected table.

4.6.3.5.16.4 Attribute force_key_equality
This attribute specifies the enforcement of key equality between table and topic
definitions. If true, key definitions from the table and topic must match, otherwise
key definitions may differ. If not specified, the value defaults to true.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@topic]

Format string
Dimension Topic name
Default value The name of the matching table
Valid values Any valid DDS Topic name
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@query]

Format string
Dimension SQL expression
Default value “” (empty string representing all data in the

specified table)
Valid values WHERE clause of an SQL expression
Required false

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@force_key_equality]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required no
287
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.16.5 Attribute event_table_policy
This attribute specifies the event table policy in the current Mapping element. If not
specified, the value defaults to FULL.
An event table (sometimes referred to as ‘change table’ or ‘shadow table’) is a
support-table that is slaved to an application-table, adding some status flags that are
under the control of a trigger mechanism that responds to creation/modification/
deletion events in the application-table.
The following policies are currently supported:
• FULL: An ‘event table’ will always be created when the service connects, and

will always be deleted when the service disconnects. In this mode, the service will
replace the table if it already exists.

• LAZY: An ‘event table’ will only be created if it is not available when the service
connects, and it will not be deleted when the service disconnects.

• NONE: An ‘event table’ will neither be created nor deleted by the service. For the
specified table, the service will poll with a frequency specified in the
coresponding update_frequency attribute of the parent NameSpace. It will start
using the table as soon as it is available. With this policy set, no initial data will be
published regardless of the value of the applicable publish_initial_data attribute.

4.6.3.5.16.6 Attribute publish_initial_data
This attribute specifies the behaviour with respect to publishing the initially
available data specified in the current Mapping element from DBMS to DDS. If not
specified, the value defaults to true. The value of this attribute is ignored when the
corresponding event_table_policy is set to NONE.

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@event_table_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@publish_initial_data]

Format boolean
Dimension n/a
288
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.3.5.16.7 Attribute trigger_policy
This attribute specifies the trigger policy for the current Mapping element. If not
specified, the value defaults to FULL.
Triggers are used to to update the event table in case of creation/modification/
deletion events on the application-table.
The following policies are currently supported:
• FULL: Triggers will always be created when the service connects, and will

always be deleted when the service disconnects. In this mode, the service will
replace the triggers if they already exist.

• LAZY: Triggers will only be created if they are not available when the service
connects, and will not be deleted when the service disconnects.

• NONE: Triggers will neither be created nor deleted by the service. This allows
you to build your own custom triggering mechanism.

4.6.4 Element Tracing
This element controls all tracing aspects of the DbmsConnect Service.

Default value true
Valid values true, false
Required no

Full path OpenSplice/DbmsConnectService/DbmsToDds/
NameSpace/Mapping[@trigger_policy]

Format enumeration
Dimension n/a
Default value FULL
Valid values FULL, LAZY, NONE
Required no

Full path OpenSplice/DbmsConnectService/Tracing
Occurrences (min-max) 0 - 1
Child-elements Element OutputFile

Element Timestamps
Element Verbosity

Required attributes <none>
Optional attributes <none>
289
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.4.1 Element OutputFile
This element specifies where the tracing log is printed to. Note that “stdout” and
“stderr” are considered legal values that represent “standard out” and “standard
error” respectively. The default value is dbmsconnect.log.

4.6.4.2 Element Timestamps
This element specifies whether the logging must contain timestamps.

4.6.4.2.1 Attribute Absolute
This attribute specifies whether the timestamps are absolute or relative to the startup
time of the service.

Full path OpenSplice/DbmsConnectService/Tracing/
OutputFile

Format string
Dimension file name
Default value dbmsconnect.log
Valid values depends on operating system.
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DbmsConnectService/Tracing/
Timestamps

Format boolean
Dimension n/a
Default value true
Valid values true, false
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute Absolute
290
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.4.3 Element Verbosity
This element specifies the verbosity level of the logging.

4.6.5 Element Watchdog
This element controls the characteristics of the Watchdog thread.

Full path OpenSplice/DbmsConnectService/Tracing/
Timestamps[@absolute]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required false

Full path OpenSplice/DbmsConnectService/Tracing/
Verbosity

Format enumeration
Dimension n/a
Default value INFO
Valid values SEVERE, WARNING, INFO, CONFIG, FINE,

FINER, FINEST
Occurrences (min-max) 0 - 1
Child-elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DbmsConnectService/Watchdog
Occurrences (min-max) 0 - 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>
291
Deploying OpenSplice DDS�������	

4 Service Configuration 4.6 The DbmsConnect Service

4.6.5.1 Element Scheduling
This element specifies the scheduling parameters used to control the watchdog
thread.

4.6.5.1.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.6.5.1.2 Element Priority
This element specifies the thread priority that will be used by the watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

Full path OpenSplice/DbmsConnectService/Watchdog/
Scheduling

Occurrences (min-max) 1 - 1
Child-elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DbmsConnectService/Watchdog/
Scheduling/Class

Format enumeration
Dimension n/a
Default value Default
Valid values Timeshare, Realtime, Default
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>
292
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7 The DDSI2 and DDSI2 Enhanced Networking Service
4.7.1 The DDSI2 Networking Service

4.7.1.1 Element DDSI2Service
The DDSI2 Networking configurat ion expects a root element named
OpenSplice/DDSI2Service. Within this root element, the networking daemon
will look for several child-elements.

Full path OpenSplice/DbmsConnectService/Watchdog/
Scheduling/Priority

Format unsigned integer
Dimension n/a
Default value depends on operating system
Valid values depends on operating system
Occurrences (min-max) 1 - 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service
Occurrences (min-max) 0 – *
Child elements Element Threads

Element Sizing
Element Compatibility
Element Discovery
Element Tracing
Element Internal
Element Watchdog
Element General
Element TCP
Element ThreadPool

Required attributes Attribute name
Optional attributes <none>
293
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

The DDSI2 Networking Service is selected by using the following xml in your
configuration file:

<Service name="ddsi2">
 <Command>ddsi2</Command>
</Service>

DDSI2 Formats and Units
The descriptions of the DDSI2 Networking Service settings often refer to one of
three ‘formats’ for the way a value should be presented. These formats all consist of
a number (either integer or floating-point) followed by a unit specification. The
following formats are used:
• ‘time’ is used to describe durations or intervals:

 - unit is ‘s’ for seconds
which may be prefixed with a multiplier:

 - ‘n’ for 10-9, ‘u’ for 10-6, ‘m’ for 10-3

 - ‘min’ for 60, ‘hr’ for 3600
As an example, the participant discovery interval, Discovery/SPDPInterval (see
Section 4.7.1.1.5.2 on page 306) takes a value in the time format To set it to 30s
(thirty seconds), all of the following entries are equivalent and will have the
desired effect if one allows for a rounding error of a few nanoseconds in the fourth
case:
 -30s

 -0.5min

 -30e9ns

 -8.333e-3hr

• ‘memory size’ is used to describe buffer capacities:
 - unit is ‘B’ for bytes
which may be prefixed with a multiplier:
 - ‘k’ or ‘Ki’ for 210, ‘M’ or ‘Mi’ for 220, ‘G’ or ‘Gi’ for 230

(Note that interpreting the SI prefixes as powers of 2 is traditional in memory size
specifications.)

• ‘bandwidth’ is used to describe network bandwidths:
 - unit ‘bps’ or ‘b/s’ for bits/second
 - unit ‘Bps’ or ‘B/s’ for bytes/second
and in both cases may be prefixed with a multiplier:
 - ‘k’ for 103, ‘M’ for 106 or ‘G’ for 109
294
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

 - ‘Ki’ for 210, ‘Mi’ for 220 or ‘Gi’ for 230.
(Note that interpreting the SI prefixes as powers of 10 is traditional in bandwidth
specifications.)

A bandwidth may also be specified as ‘inf’ (no unit), to indicate that the DDSI2
Service should not attempt to artificially limit the bandwidth.

4.7.1.1.1 Attribute name
This attribute identifies the configuration for the DDSI2 Service. Multiple DDSI2
service configurations can be specified in one single resource. The actual applicable
configuration is determined by the value of the name attribute, which must match
the specified under the element OpenSplice/Service[@name] in the Domain
Service configuration.

4.7.1.1.2 Element Threads
This element is used to set thread properties

4.7.1.1.2.1 Element Thread
This element specifies thread properties, such as scheduling parameters.

Full path OpenSplice/DDSI2Service/name
Format String
Default value
Required false

Full path OpenSplice/DDSI2Service/Threads
Occurrences (min-max) 0 – 1
Child elements Element Thread
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Threads/Thread
Occurrences (min-max) 0 – 1000
295
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.2.1.1 Attribute name
The name of the thread.

4.7.1.1.2.1.2 Element StackSize
This element specifies the stack size for this thread (or ‘default’).

4.7.1.1.2.1.3 Element Scheduling
Configures the scheduling properties of the thread.

Child elements Element StackSize
Element Scheduling

Required attributes <none>
Optional attributes Attribute name

Full path OpenSplice/DDSI2Service/Threads/
Thread[@name]

Format String
Default value
Required false

Full path OpenSplice/DDSI2Service/Threads/Thread/
StackSize

Format memory size
Default value default
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
296
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.2.1.3.1 Element Class
This element specifies the thread scheduling class (‘realtime’, ‘timeshare’ or
‘default’). The user may need the appropriate privileges from the underlying
operating system to be able to assign some of the privileged scheduling classes.

4.7.1.1.2.1.3.2 Element Priority
This element specifies the thread priority (decimal integer or ‘default’). Only
priorities that are supported by the underlying operating system can be assigned to
this element. The user may need special privileges from the underlying operating
system to be able to assign some of the privileged priorities.

Full path OpenSplice/DDSI2Service/Threads/Thread/
Scheduling

Occurrences (min-max) 0 – 1
Child elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Threads/Thread/
Scheduling/Class

Format Enumeration
Default value default
Valid values realtime, timeshare, default
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Threads/Thread/
Scheduling/Priority

Format String
Default value default
Occurrences (min-max) 0 – 1
297
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.3 Element Sizing
The Sizing element specifies a variety of configuration settings dealing with
expected system sizes, buffer sizes, etc..

4.7.1.1.3.1 Element EndpointsInSystem
This endpoint specifies the expected maximum number of endpoints in the network.
Underestimating this number will have a significant performance impact, but will
not affect correctness; signficantly overestimating it will cause more memory to be
used than necessary.

Child elements <none>
Required attribute <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Sizing
Occurrences (min-max) 0 – 1
Child elements Element EndpointsInSystem

Element NetworkQueueSize
Element ReceiveBufferSize
Element ReceiveBufferChunkSize
Element LocalEndpoints

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Sizing/
EndpointsInSystem

Format Integer
Default value 20000
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
298
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.3.2 Element NetworkQueueSize
This element specifies the maximum number of samples in the network queue.
Write/dispose operations add samples to this queue, the DDSI2 service drains it.
Larger values allow large bursts of writes to occur without forcing synchronization
between the application and the DDSI2 service, but do introduce the potential for
longer latencies and increase the maximum amount of memory potentially occupied
by messages in the queue.

4.7.1.1.3.3 Element ReceiveBufferSize
Size of a single receive buffer. Many receive buffers may be needed; this size must
be greater than ReceiveBufferChunkSize (see Section 4.7.1.1.3.4 below) by a
modest amount.

4.7.1.1.3.4 Element ReceiveBufferChunkSize
Size of one allocation unit in the receive buffer. Must be greater than the maximum
packet size by a modest amount (too large packets are dropped). These allocations
shrink when possible.

Full path OpenSplice/DDSI2Service/Sizing/
NetworkQueueSize

Format Integer
Default value 1000
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Sizing/
ReceiveBufferSize

Format memory size
Default value 1 MiB
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
299
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.3.5 Element LocalEndpoints
This element specifies the expected maximum number of endpoints local to one
DDSI2 service. Underestimating this number will have a significant performance
impact, but will not affect correctness; significantly overestimating it will cause
more memory to be used than necessary.

4.7.1.1.4 Element Compatibility
The Compatibility elements allows specifying various settings related to
compatibility with standards and with other DDSI implementations.

Full path OpenSplice/DDSI2Service/Sizing/
ReceiveBufferChunkSize

Format memory size
Default value 128 KiB
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Sizing/LocalEndpoints
Format Integer
Default value 1000
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
300
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.4.1 Element ArrivalOfDataAssertsPpAndEpLiveliness
Ignored (for backwards compatibility).

4.7.1.1.4.2 Element AckNackNumbitsEmptySet
This element governs the representation of an acknowledgement message that does
not also negatively-acknowledge some samples.
If set to 0, the generated acknowledgements have an invalid form and will be
rejected by strict mode, but several other implementations require this setting for
smooth interoperation.

Full path OpenSplice/DDSI2Service/Compatibility
Occurrences (min-max) 0 – 1
Child elements Element ArrivalOfDataAssertsPpAndEpLiveliness

Element AckNackNumbitsEmptySet
Element
RespondToRtiInitZeroAckWithInvalidHeartbeat
Element AssumeRtiHasPmdEndpoints
Element StandardsConformance
Element ExplicitlyPublishQosSetToDefault
Element ManySocketsMode

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Compatibility/
ArrivalOfDataAssertsPpAndEpLiveliness

Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
301
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

If set to 1 , all acknowledgements sent by DDSI2 adhere to the form of
acknowledgement messages allowed by the standard, but this causes problems when
interoperating with these other implementations.
The strict and pedantic standards conformance modes always overrule
AckNackNumbitsEmptySet = 0 to prevent the transmission of invalid messages.

4.7.1.1.4.3 Element RespondToRtiInitZeroAckWithInvalidHeartbeat
This option allows a closer mimicking of the behaviour of some other DDSI
implementations, albeit at the cost of generating even more invalid messages.
Setting it to true ensures a Heartbeat can be sent at any time when a remote node
requests one, setting it to false delays it until a valid one can be sent. The latter is
fully compliant with the specification, and no adverse effects have been observed. It
is the default.

Full path OpenSplice/DDSI2Service/Compatibility/
AckNackNumbitsEmptySet

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Compatibility/
RespondToRtiInitZeroAckWithInvalidHeartbeat

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
302
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.4.4 Element AssumeRtiHasPmdEndpoints
This option assumes ParticipantMessageData endpoints required by the
liveliness protocol are present in RTI participants even when not properly advertised
by the participant discovery protocol.

4.7.1.1.4.5 Element StandardsConformance
Selects the level of standards conformance of this instance of the DDSI2 Service.
Stricter conformance typically means less interoperabili ty with other
implementations.
Currently three modes are defined:
pedantic – Very strictly conforms to the specification, ultimately for compliancy

testing, but currently of little value because it adheres even to what will most
likely turn out to be editing errors in the DDSI standard. Arguably, as long as no
errata have been published it is the current text that is in effect, and that is what
pedantic currently does.

strict – Takes a slightly less strict view of the standard than pedantic: it follows
the established behaviour where the standard is obviously in error.

lax – Simply tries to provide the smoothest possible interoperability, anticipating
future revisions of elements in the standard in areas that other implementations
do not adhere to, even though there is no good reason not to.

The default setting is lax.

Full path OpenSplice/DDSI2Service/Compatibility/
AssumeRtiHasPmdEndpoints

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
303
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.4.6 Element ExplicitlyPublishQosSetToDefault
This option specifies whether QoS settings set to default values are explicitly
published in the discovery protocol. Implementations are to use the default value for
QoS settings not published, which allows a signficant reduction of the amount of
data that needs to be exchanged for the discovery protocol, but this requires all
implementations to adhere to the default values specified by the specifications.
When interoperability is required with an implementation that does not follow the
specifications in this regard, setting this option to true will help.

4.7.1.1.4.7 Element ManySocketsMode
This option specifies whether a network socket will be created for each domain
participant on a host. The specification seems to assume that each participant has a
unique address, and setting this option to true will ensure that this is the case.

Full path OpenSplice/DDSI2Service/Compatibility/
StandardsConformance

Format Enumeration
Default value lax
Valid values lax, strict, pedantic
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Compatibility/
ExplicitlyPublishQosSetToDefault

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
304
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

The default setting of false slightly improves performance and reduces network
traffic somewhat.

4.7.1.1.5 Element Discovery
The Discovery element allows specifying various parameters related to the
discovery of peers.

4.7.1.1.5.1 Element SPDPMulticastAddress
This element specifies the multicast address that is used as the destination for the
participant discovery packets.

Full path OpenSplice/DDSI2Service/Compatibility/
ManySocketsMode

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery
Occurrences (min-max) 0 – 1
Child elements Element SPDPMulticastAddress

Element SPDPInterval
Element DomainId
Element ParticipantIndex
Element Ports
Element Peers

Required attributes <none>
Optional attributes <none>
305
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.2 Element SPDPInterval
This element specifies the interval between spontaneous transmissions of participant
discovery packets.

4.7.1.1.5.3 Element DomainId
This element allows for the overriding of the DDS Domain Id that is used for this
DDSI2 service.

Full path OpenSplice/DDSI2Service/Discovery/
SPDPMulticastAddress

Format String
Default value 239.255.0.1
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/
SPDPInterval

Format time
Default value 10 s
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/DomainId
Format String
Default value default
Occurrences (min-max 0 – 1
306
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.4 Element ParticipantIndex
This element specifies the DDSI participant id used by this instance of the DDSI2
service for discovery purposes. Only one such participant id is used, independent of
the number of actual DomainParticipants on the node. It is either ‘AUTO’ (the
default), which will attempt to automatically determine an available participant
index, or a non-negative integer less than 120, or ‘NONE’, which causes it to use
arbitrary port numbers for unicast sockets which entirely removes the constraints on
the participant index but makes unicast discovery impossible.

4.7.1.1.5.5 Element Ports
The Port element allows specifying various parameters related to the port numbers
used for discovery. These all have default values specified by the DDSI 2.1
specification.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/
ParticipantIndex

Format String
Default value auto
Valid values auto, none, 0 – 120
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
307
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.5.1 Element MulticastMetaOffset
This element specifies the port number for multicast meta traffic (please refer to the
DDSI 2.1 specification, section 9.6.1, constant d0).

4.7.1.1.5.5.2 Element UnicastMetaOffset
This element specifies the port number for unicast meta traffic (please refer to the
DDSI 2.1 specification, section 9.6.1, constant d1).

Full path OpenSplice/DDSI2Service/Discovery/Ports
Occurrences (min-max) 0 – 1
Child elements Element MulticastMetaOffset

Element UnicastMetaOffset
Element MulticastDataOffset
Element UnicastDataOffset
Element Base
Element DomainGain
Element ParticipantGain

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
MulticastMetaOffset

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
UnicastMetaOffset

Format Integer
Default value 10
Occurrences (min-max) 0 – 1
308
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.5.3 Element MulticastDataOffset
This element specifies the port number for multicast meta traffic (please refer to the
DDSI 2.1 specification, section 9.6.1, constant d2).

4.7.1.1.5.5.4 Element UnicastDataOffset
This element specifies the port number for unicast meta traffic (please refer to the
DDSI 2.1 specification, section 9.6.1, constant d3).

4.7.1.1.5.5.5 Element Base
This element specifies the base port number (please refer to the DDSI 2.1
specification, section 9.6.1, constant PB).

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
MulticastDataOffset

Format Integer
Default value 1
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
UnicastDataOffset

Format Integer
Default value 11
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
309
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.5.6 Element DomainGain
This element specifies the domain gain, relating domain ids to sets of port numbers
(please refer to the DDSI 2.1 specification, section 9.6.1, constant DG).

4.7.1.1.5.5.7 Element ParticipantGain
This element specifies the participant gain, relating participant index to sets of port
numbers (please refer to the DDSI 2.1 specification, section 9.6.1, constant PG).

Full path OpenSplice/DDSI2Service/Discovery/Ports/Base
Format Integer
Default value 7400
Valid values 1 – 65535
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
DomainGain

Format Integer
Default value 250
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Ports/
ParticipantGain

Format Integer
Default value 2
Occurrences (min-max) 0 – 1
310
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.5.6 Element Peers
This element statically configures addresses of discovery.

4.7.1.1.5.6.1 Element Peer
This element statically configures addresses of discovery.

4.7.1.1.5.6.1.1 Attribute address
This element specifies an IP address to which discovery packets must be sent, in
addition to the default multicast address if multicasting is enabled (please refer to
General/AllowMulticast (see Section 4.7.1.1.9.2 on page 336)). Multiple Peers may
be specified.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Peers
Occurrences (min-max) 0 – 1
Child elements Element Peer
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Discovery/Peers/Peer
Occurrences (min-max) 0 – *
Child elements <none>
Required attributes <none>
Optional attributes Attribute address

Full path OpenSplice/DDSI2Service/Discovery/Peers/Peer/
address

Format String
Default value

Required false
311
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.6 Element Tracing
The Tracing element controls the amount and type of information that is written into
the tracing log by the DDSI service. This is useful to track the DDSI service during
application development.

4.7.1.1.6.1 Element Timestamps
This element specifies whether the logging must contain timestamps.

4.7.1.1.6.1.1 Attribute absolute
This attribute specifies whether the timestamps are absolute or relative to the startup
time of the service.

Full path OpenSplice/DDSI2Service/Tracing
Occurrences (min-max) 0 – 1
Child elements Element Timestamps

Element AppendToFile
Element PacketCaptureFile
Element EnableCategory
Element Verbosity
Element OutputFile

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Tracing/Timestamps
Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes Attribute absolute
312
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.6.2 Element AppendToFile
This option specifies whether the output is to be appended to an existing log file.

4.7.1.1.6.3 Element PacketCaptureFile
This option specifies the file to which received and sent packets will be logged in
the pcap format suitable for analysis using common networking tools, such as
WireShark. IP and UDP headers are fictitious, in particular the destination address
of received packets. The TTL may be used to distinguish between sent and received
packets: it is 255 for sent packets and 128 for received ones.

Full path OpenSplice/DDSI2Service/Tracing/Timestamps/
absolute

Format Boolean
Default value true
Valid values false, true
Required false

Full path OpenSplice/DDSI2Service/Tracing/AppendToFile
Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Tracing/PacketCapture
File

Format String
Default value

Occurrences (min-max) 0 – 1
313
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.6.4 Element EnableCategory
 This element enables individual logging categories. These are enabled in addition
to those enabled by Tracing/Verbosity.

4.7.1.1.6.5 Element Verbosity
This element enables standard groups of categories, based on a desired verbosity
level. This is in addition to the categories enabled by the Tracing/EnableCategory
setting.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Tracing/
EnableCategory

Format String
Default value

Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Tracing/Verbosity
Fomat Enumeration
Default value none
Valid values config, info, warning, severe, none, finest, finer,

fine
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
314
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.6.6 Element OutputFile
This option specifies where the logging is printed to. Note that stdout and stderr
are treated as special values, representing ‘standard out’ and ‘standard error’
respectively. No file is created unless logging categories are enabled using the
Tracing/Verbosity or Tracing/EnabledCategory settings.

4.7.1.1.7 Element Internal
The Internal elements deal with a variety of settings that are in no way supported
and may change without notice.

Full path OpenSplice/DDSI2Service/Tracing/OutputFile
Format String
Default value ddsi2.log
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
315
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Full path OpenSplice/DDSI2Service/Internal
Occurrences (min-max) 0 – 1
Child elements Element ScheduleTimeRounding

Element ResponsivenessTimeout
Element PrimaryReorderMaxSamples
Element RetransmitMerging
Element SecondaryReorderMaxSamples
Element DDSI2DirectMaxThreads
Element RetransmitMergingPeriod
Element DefragUnreliableMaxSamples
Element SquashParticipants
Element DefragReliableMaxSamples
Element BuiltinEndpointSet
Element AggressiveKeepLast1Whc
Element ConservativeBuiltinReaderStartup
Element MaxQueuedRexmitBytes
Element MeasureHbToAckLatency
Element LegacyFragmentation
Element MaxQueuedRexmitMessages
Element SuppressSpdpMulticast
Element SpdpResponseMaxDelay
Element WriterLingerDuration
Element UnicastResponseToSpdpMessages
Element MinimumSocketReceiveBufferSize
Element SynchronousDeliveryPriorityThreshold
Element SynchronousDeliveryLatencyBound
Element MaxMessageSize
Element NackDelay
Element MaxParticipants
Element FragmentSize
Element PreEmptiveAckDelay
Element AccelerateRexmitBlockSize
Element DeliveryQueueMaxSamples
Element MaxSampleSize
Element Test
Element Watermarks

Required attributes <none>
Optional attributes <none>
316
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.1 Element ScheduleTimeRounding
INTERNAL
Allows for the timing of scheduled events to be rounded up so that more events can
be handled in a single cycle of the event queue. The default is 0 so that events are
not rounded at all, i.e. scheduled exactly, whereas a value of 10ms (‘10 ms’ is also
valid, as embedded white space is allowed for readability) would mean that events
are rounded up to the nearest 10 milliseconds.

4.7.1.1.7.2 Element ResponsivenessTimeout
INTERNAL
Time an unresponsive reader is allowed to block the transmit thread until it is
considered unresponsive and degraded to unreliable. It will be restored to
reliable service once it resumes ACK’ing samples.

4.7.1.1.7.3 Element PrimaryReorderMaxSamples
INTERNAL

Full path OpenSplice/DDSI2Service/Internal/
ScheduleTimeRounding

Format time
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
ResponsivenessTimeout

Format time
Default value 1 s
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
317
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Maximum size in samples of a primary re-order admin (one per proxy-writer).

4.7.1.1.7.4 Element RetransmitMerging
INTERNAL
Setting controlling the addressing and timing of retransmits. Possible values are:
never – Retransmit only to the NACK-ing reader.
adaptive – Attempt to combine proper retransmits for reliability, but send

historical transient-local data to the requesting reader only.
always – Do not distinguish between different causes, always try to merge.
The default is adaptive.

4.7.1.1.7.5 Element SecondaryReorderMaxSamples
INTERNAL

Full path OpenSplice/DDSI2Service/Internal/
PrimaryReorderMaxSamples

Format Integer
Default value 64
Occurrences (min-max) 0 - 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
RetransmitMerging

Format Enumeration
Default value adaptive
Valid values never, adaptive, always
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
318
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Maximum size in samples of a secondary re-order admin (one per out-of-sync
reader).

4.7.1.1.7.6 Element DDSI2DirectMaxThreads
INTERNAL
Maximum number of extra threads for experimental direct mode.

4.7.1.1.7.7 Element RetransmitMergingPeriod
INTERNAL
Period during which future NACKs are considered to be covered by a retransmit.

Full path OpenSplice/DDSI2Service/Internal/
SecondaryReorderMaxSamples

Format Integer
Default value 16
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
DDSI2DirectMaxThreads

Format Integer
Default value 1
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
RetransmitMergingPeriod

Format time
Default value 5 ms
319
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.8 Element DefragUnreliableMaxSamples
INTERNAL
Maximum number of samples being defragmented simultaneously for best-effort
writers.

4.7.1.1.7.9 Element SquashParticipants
INTERNAL
Advertise only one domain participant in DDSI (the one corresponding to the
DDSI2 process), making it the virtual owner of all readers and writers of all domain
participants, reducing discovery work.

Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
DefragUnreliableMaxSamples

Format Integer
Default value 4
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
SquashParticipants

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
320
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.10 Element DefragReliableMaxSamples
INTERNAL
Maximum number of samples being defragmneted simultaneously for reliable
writers.

4.7.1.1.7.11 Element BuiltinEndpointSet
INTERNAL
Controls which participants will have which built-in endpoints for the discovery and
liveliness protocols. Valid values are:
full – All participants have all endpoints.
writers – All participants have the writers, but just one has the readers.
minimal – Only one participant has built-in endpoints.
The default is writers, as this is thought to be compliant and reasonably efficient,
minimal may or may not be compliant but is most efficient, and full is inefficient
but certain to be compliant.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
DefragReliableMaxSamples

Format Integer
Default value 16
Occurrences (min-max) 0 - 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
BuiltinEndpointSet

Full path Enumeration
Default value writers
321
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.12 Element AggressiveKeepLast1Whc
INTERNAL
Whether to drop a reliable sample from a WHC before all readers have ACK’d it as
soon as a later sample becomes available.

4.7.1.1.7.13 Element ConservativeBuiltinReaderStartup
INTERNAL
Let all built-in readers request all historical data, instead of just one.

Valid values full, writers, minimal
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
AggressiveKeepLast1Whc

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
ConservativeBuiltinReaderStartup

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
322
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.14 Element MaxQueuedRexmitBytes
INTERNAL
Maximum number of bytes queued for retransmission, default value of 0 is
unlimited unless AuxiliaryBandwidthLimit is in effect, in which case it is
NackDelay * AuxiliaryBandwidthLimit. Must be large enough to contain
the largest sample that may need to be re-transmitted.

4.7.1.1.7.15 Element MeasureHbToAckLatency
INTERNAL
Measure heartbeat-to-ACK latency by prepending timestamps to heartbeats and
ACKs and calculating round trip times.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MaxQueuedRexmitBytes

Format memory size
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MeasureHbToAckLatency

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
323
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.16 Element LegacyFragmentation
INTERNAL
This option enables a backwards-compatible, non-compliant setting and
interpretation of the control flags in fragmented data messages. To be enabled ONLY
when requiring interoperability between compliant and non-compliant versions of
DDSI2 for large messages.

4.7.1.1.7.17 Element MaxQueuedRexmitMessages
INTERNAL
Maximum number of messages queued for retransmission, default value is
arbitrarily chosen. Must be large enough to contain the largest sample that may need
to be retransmitted.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
LegacyFragmentation

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MaxQueuedRexmitMessages

Format Integer
Default value 200
Occurrences (min-max) 0 – 1
324
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.18 Element SuppressSpdpMulticast
INTERNAL
Disable even the mandatory multicasting of the participant discovery packets.

4.7.1.1.7.19 Element SpdpResponseMaxDelay
INTERNAL
Maximum pseudo-random delay between discovering a remote participant and
responding to it.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
SuppressSpdpMulticast

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
SpdpResponseMaxDelay

Format time
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
325
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.20 Element WriterLingerDuration
INTERNAL
Maximum duration for which actual deletion of a reliable writer with
unacknowledged data in its history will be delayed to provide proper reliable
transmission.

4.7.1.1.7.21 Element UnicastResponseToSpdpMessages
INTERNAL
Repond to newly-discovered participants with a unicasted SPDP packet instead of
rescheduling the periodic multicasted one.

4.7.1.1.7.22 Element MinimumSocketReceiveBufferSize
INTERNAL

Full path OpenSplice/DDSI2Service/Internal/
WriterLingerDuration

Format time
Default value 1 s
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
UnicastResponseToSpdpMessages

Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
326
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Minimum size of socket receive buffers. This setting can only increase the size of
the receive buffer, if the operating system by default creates a larger buffer, it is left
unchanged.

4.7.1.1.7.23 Element SynchronousDeliveryPriorityThreshold
INTERNAL
Messages with latency budget <= SynchronousDeliveryLatencyBound and
transport priority >= SynchronousDeliveryPriorityThreshold will be delivered
synchronously, all others will be delivered asynchronously through delivery queues.
This reduces latency at the expense of bandwidth.

4.7.1.1.7.24 Element SynchronousDeliveryLatencyBound
INTERNAL

Full path OpenSplice/DDSI2Service/Internal/
MinimumSocketReceiveBufferSize

Format memory size
Default value 64 KiB
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
SynchronousDeliveryPriorityThreshold

Format Integer
Default value 2147483647
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
327
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Messages with latency budget <= SynchronousDeliveryLatencyBound and
transport priority >= SynchronousDeliveryPriorityThreshold will be delivered
synchronously, all others will be delivered asynchronously through delivery queues.
This reduces latency at the expense of bandwidth. The special value ‘inf’ can be
used to indicate that there is no limit on the latency budget.

4.7.1.1.7.25 Element MaxMessageSize
INTERNAL
This element specifies the maximum size UDP payload DDSI will use. DDSI will
try to maintain this limit, but will overrun it if it cannot otherwise fit the data in. For
t h e c u r re n t v e r s i o n , t h i s means t ha t when MaxMessageSize <
FragmentSize + 108 bytes (for reliable data, if there is only best-effort data, the
delta is 92 bytes), UDP payloads larger than MaxMessageSize may be observed.
On some networks it may be necessary to set this item to keep the packetsize below
the MTU to prevent IP fragmentation.

Full path OpenSplice/DDSI2Service/Internal/
SynchronousDeliveryLatencyBound

Format time or ‘inf’
Default value 0

Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MaxMessageSize

Format memory size
Default value 4 KiB
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
328
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.26 Element NackDelay
INTERNAL
Delay between receipt of a HEARTBEAT indicating missing samples and a NACK
(ignored when the HEARTBEAT requires an answer).

4.7.1.1.7.27 Element MaxParticipants
INTERNAL
Maximum number of participants one DDSI2 service instance is willing to service.
0 is unlimited.

4.7.1.1.7.28 Element FragmentSize
INTERNAL
Samples larger than FragmentSize are broken into fragments of FragmentSize
bytes each, except the last one, which may be smaller. The DDSI specification
mandates a minimum fragment size of 1025 bytes, but DDSI2 will do whatever size
is requested, accepting fragments of which the size is at least the minimum of 1025
and FragmentSize.

Full path OpenSplice/DDSI2Service/Internal/ NackDelay
Format time
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MaxParticipants

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
329
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.29 Element PreEmptiveAckDelay
INTERNAL
The delay between the registration of an entity and the sending of the pre-emptive
ACKNACK.

4.7.1.1.7.30 Element AccelerateRexmitBlockSize
INTERNAL
Proxy readers that are assumed to sill be retrieving historical data get this many
samples retransmitted when they NACK something, even if some of these samples
have sequence numbers outside the set covered by the NACK.

Full path OpenSplice/DDSI2Service/Internal/ FragmentSize
Format memory size
Default value 1.25 KiB
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
PreEmptiveAckDelay

Format time
Default value 10 ms
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
AccelerateRexmitBlockSize

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
330
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.31 Element DeliveryQueueMaxSamples
INTERNAL
Maximum size of a delivery queue in samples for incoming samples to be accepted.

4.7.1.1.7.32 Element MaxSampleSize
INTERNAL
Maximum allowed serialized size of a sample.

4.7.1.1.7.33 Element Test
INTERNAL

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
DeliveryQueueMaxSamples

Format Integer
Default value 256
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
MaxSampleSize

Format Memory size
Default value 2147483647 B
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
331
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

Testing options.

4.7.1.1.7.33.1 Element XmitLossiness
INTERNAL
Fraction of outgoing packets to drop, specified as ‘parts per thousand’.

4.7.1.1.7.34 Element Watermarks
INTERNAL
Watermarks for flow-control

Full path OpenSplice/DDSI2Service/Internal/Test
Occurrences (min-max) 0 – 1
Child elements Element XmitLossiness
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/Test/
XmitLossiness

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/ Internal/Watermarks
Occurrences (min-max) 0 – 1
Child elements Element WhcLow

Element WhcHigh
Required attributes <none>
Optional attributes <none>
332
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.7.34.1 Element WhcLow
INTERNAL
Low watermark for the WHCs in samples, transmitting resumes when WHC shrinks to
this size.

4.7.1.1.7.34.2 Element WhcHigh
INTERNAL
High watermark for the WHCs in samples, transmitting is suspended when the WHC
grows to this size.

4.7.1.1.8 Element Watchdog
This element specifies the type of OS scheduling class that will be used by the
thread that announces its liveliness periodically.

Full path OpenSplice/DDSI2Service/Internal/
Watermarks/WhcLow

Format Integer
Default value 100
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Internal/
Watermarks/WhcHigh

Format Integer
Default value 400
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
333
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.8.1 Element Class
This element specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.7.1.1.8.2 Element Priority
This element specifies the thread priority. Only priorities that are supported by the
underlying operating system can be assigned to this element. The user may need
special privileges from the underlying operating system to be able to assign some of
the privileged priorities.

Full path OpenSplice/DDSI2Service/Watchdog
Occurrences (min-max) 0 – 1
Child elements Element Class

Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Watchdog/Class
Format Enumeration
Default value default
Valid values realtime, timeshare, default
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/Watchdog/Priority
Format Integer
Default value 0
Occurrences (min-max) 0 – 1
334
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9 Element General
The General element specifies overall DDSI2 service settings.

4.7.1.1.9.1 Element ExternalNetworkMask
This element specifies the network mask of the external network address. This
element is only used when the configured external network address is specified. In
this case locators discovered within the same external subnet (according to this
mask) will be translated to an internal address. For this purpose the network part of
the external address (as indicated by the mask) will be replaced by the network
address part of the selected primary interface.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General
Occurrences (min-max) 0 – 1
Child elements Element ExternalNetworkMask

Element AllowMulticast
Element MulticastTimeToLive
Element DontRoute
Element UseIPv6
Element EnableMulticastLoopback
Element CoexistWithNativeNetworking
Element StartupModeDuration
Element StartupModeCoversTransient
Element NetworkInterfaceAddress
Element MulticastRecvNetworkInterfaceAddresses
Element ExternalNetworkAddress

Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
ExternalNetworkMask

Format String
Default value 0.0.0.0
335
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.2 Element AllowMulticast
This element specifies whether the DDSI2 service may use IP multicasting.
When set to false, no multicast packets will ever be sent by the service, but it will
still listen to multicast packets from other nodes. Generally speaking, the peer nodes
will have to be listed as Discovery/Peer elements, but the service will automatically
discover multicasting peers that advertise a unicast address.
When set to true, multicast is used preferentially. If any Peer elements are given,
they will explicitly be included in the discovery by means of packets sent to the
specified addresses.

4.7.1.1.9.3 Element MulticastTimeToLive
This element specifies the time-to-live for outgoing multicast packets.
By specifying a value of ‘0’, multicast traffic can be confined to the local node, and
such ‘loopback’ performance is typically optimized by the operating system

Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
AllowMulticast

Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
MulticastTimeToLive

Format Integer
Default value 32
336
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.4 Element DontRoute
This element specifies whether the DDSI2 service disables routing of IP packets.

4.7.1.1.9.5 Element UseIPv6
This element specifies whether the DDSI2 service will be using IPv6 instead of
IPv4.

Valid values 0 – 255
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/DontRoute
Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/UseIPv6
Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
337
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.6 Element EnableMulticastLoopback
This element specifies whether the DDSI2 service will allow IP multicast packets
within the node to be visible to all DDSI participants in the node, including itself. It
must be true for intra-node multicast communications, but if a node runs only a
single OpenSplice DDSI2 service and does not host any other DDSI-capable
programs, it may be set to false for improved performance.

4.7.1.1.9.7 Element CoexistWithNativeNetworking
This element specifies whether the DDSI2 service can operate in conjunction with
the OpenSplice Network Service. When false, the DDSI2 service will take care of
all communications, including those between OpenSplice nodes; when true, the
DDSI2 service will only communicate with DDS implementations other than
OpenSplice . In this case the NetworkService must be configured as well

Full path OpenSplice/DDSI2Service/General/
EnableMulticastLoopback

Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
CoexistWithNativeNetworking

Format Boolean
Default value false
Valid values false, true
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
338
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.8 Element StartupModeDuration
This element specifies how long the DDSI2 remains in its ‘startup’ mode. While in
‘startup’ mode all volatile reliable data published on the local node is retained as if it
were transient local data, so that existing readers on remote nodes can get the data
even though discovering them takes some time. ‘Best-effort’ data by definition need
not arrive, and transient and persistent data are covered by the Durability service.
Once the system is stable, the DDSI2 service keeps track of the existence of remote
readers whether or not matching writers exist locally, avoiding this discovery delay,
and thereby ensuring this is merely a node startup issue.
Setting StartupModeDuration to 0 will disable it.

4.7.1.1.9.9 Element StartupModeCoversTransient
This element configures whether ‘startup’ mode should also cover transient and
persistent data, for configurations where the Durability service does not take care of
it. It is recommended that configurations without defined merge policies leave this
enabled.

Full path OpenSplice/DDSI2Service/General/
StartupModeDuration

Format time
Default value 2 s
Valid values 0 – 60000
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
StartupModeCoversTransient

Format Boolean
Default value true
Valid values false, true
Occurrences (min-max) 0 – 1
339
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.10 Element NetworkInterfaceAddress
This element specifies which network interface card should be used. Each DDSI2
service is bound to only one network interface card (NIC). The card can be
identified by its corresponding IP address, network interface name, or the network
portion of the address. If the value auto is entered here, the OpenSplice middleware
will attempt to look up an interface that has the required capabilities.

4.7.1.1.9.11 Element MulticastRecvNetworkInterfaceAddresses
This element specifies which network interface cards should be used to receive.
Each DDSI2 service can receive from multiple network interface cards (NIC). The
cards can be uniquely identified by their corresponding IP addresses.
• If ‘preferred’ is entered here, the OpenSplice middleware will attempt to

receive multicasts only from the interface selected as the preferred interface,
either automatically or using the General/NetworkInterfaceAddress setting (see
Section 4.7.1.1.9.10 above).

• If the value all is entered here, the OpenSplice middleware will attempt to
receive from all interfaces that have the required capabilities;

• If any is entered here, the OpenSplice middleware will attempt to receive from
whichever interface the operating system uses as the default.

• If none is entered, it will not listen to multicasts on any interface.
Otherwise if a comma-separated list of network address(es) is supplied it will
attempt to receive from the NICs corresponding to all of the listed addresses.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
NetworkInterfaceAddress

Format String
Default value auto
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
340
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.9.12 Element ExternalNetworkAddress
This element specifies the network address this DDSI2 service advertises in the
discovery protocol. This can, for example, be used to be a specify an externally
visible address when Network Address Translation is used. By default, it is the
ne twork address o f the se lec ted p r imary in te r face (p lease re fe r to
General/NetworkInterfaceAddress).

4.7.1.1.10 Element TCP
The TCP element allows specifying various parameters related to running DDSI
over TCP.

Full path OpenSplice/DDSI2Service/General/
MulticastRecvNetworkInterfaceAddress

Format String
Default value preferred
Valid Values preferred, all, any, none, comma-separated list of IP

addresses
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/General/
ExternalNetworkAddress

Format String
Default value auto
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/TCP
Occurrences (min-max) 0 – 1
341
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.10.1 Attribute Enable
This element enables the optional TCP transport.

4.7.1.1.10.2 Attribute Locators
This element specifies what endpoints should be placed in unicast locators (local
or none). If set as none, no unicast locators will be advertised via DDSI discovery
so peers will use the discovery connection for communication. The default value is
local which means that the listener endpoint is advertised so peers will use this to
establish a new connection back to the process.

4.7.1.1.10.3 Attribute NoDelay
This element enables the TCP_NODELAY socket option, preventing multiple DDSI
messages being sent in the same TCP request.

Child elements <none>
Required attributes <none>
Optional attributes Attribute Enable

Attribute Locators
Attribute NoDelay
Attribute Port

Full path OpenSplice/DDSI2Service/TCP[@Enable]
Format boolean
Dimension n/a
Default value false
Valid values true, false
Required no

Full path OpenSplice/DDSI2Service/TCP[@Locators]
Format enumeration
Dimension n/a
Default value local
Valid values local, none
Required no
342
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.10.4 Attribute Port
This element specifies the port number used for DDSI discovery (the TCP listening
port). Dynamically allocated if zero. Disabled if -1 or not configured.

4.7.1.1.11 Element ThreadPool
The ThreadPool element allows specifying various parameters related to
configuring a thread pool for sending DDSI messages

Full path OpenSplice/DDSI2Service/TCP[@NoDelay]
Format boolean
Dimension n/a
Default value false
Valid values true, false
Required no

Full path OpenSplice/DDSI2Service/TCP[@Port]
Format signed integer
Dimension n.a.
Default value -1
Valid values -1 – 65535
Occurrences (min-max) 0 – 1
Child Elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2Service/TCP
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes Attribute Enable

Attribute ThreadMax
Attribute Threads
343
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.1.1.11.1 Attribute Enable
This element enables the optional thread pool.

4.7.1.1.11.2 Attribute ThreadMax
This element configures the maximum number of threads in the thread pool.

4.7.1.1.11.3 Attribute Threads
This element configures the initial number of threads in the thread pool.

4.7.2 The DDSI2 Enhanced Networking Service
The DDSI2 Enhanced Networking Service is an extended version of the DDSI2
Networking Service adding multiple channels to allow end-to-end prioritisation of
traffic based on the ‘transport priority’ QoS for writers, bandwidth limiting on the

Full path OpenSplice/DDSI2Service/ThreadPool[@Enable]
Format boolean
Dimension n/a
Default value false
Valid values true, false
Required no

Full path OpenSplice/DDSI2Service/ThreadPool
[@ThreadMax]

Format unsigned integer
Dimension n/a
Default value 8
Valid values 0 - maxInt
Required no

Full path OpenSplice/DDSI2Service/ThreadPool[@Threads]
Format unsigned integer
Dimension n/a
Default value 4
Valid values 0 - maxInt
Required no
344
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

transmitter side to control maximum network bandwidth usage by a single node,
mapping DCPS topic/partition combinations to different multicast addresses to
avoid saturating networks with high-volume data that needs to be received by only a
few nodes, and data encryption. Note that these are all features that are also
available in the RT networking service.
The DDSI2 Enhanced Networking Service is selected by using the following xml in
your configuration file:

<Service name="ddsi2e">
 <Command>ddsi2e</Command>
</Service>

The essential difference from the DDSI2 Networking Service in the configuration is
the <Command> element: ‘ddsi2e’ selects the enhanced service.
Because it is a strict extension, the full set of settings of the DDSI2 Networking
Service is also available in the DDSI2 Enhanced Networking Service. Rather than
listing them all again here, please refer to the preceding Section 4.7.1, The DDSI2
Networking Service, on page 293.
However, the root element for the configuration is different. For the DDSI2
Enhanced Networking Service, it is ‘OpenSplice/DDSI2EService’, and when
considering configuration settings listed in the preceding section for the DDSI2
Enhanced Networking Service, this difference should be kept in mind.
The Channels, Security and Partitioning elements are exclusive to the DDSI2
Enhanced Networking Service and are described below. Furthermore some options
have been added to subcategories, which are given below as well. For all other
options, please see Section 4.7.1, The DDSI2 Networking Service, on page 293,
bearing in mind the difference in root element names.

4.7.2.1 Element DDSI2EService
The DDSI2 Enhanced Networking configuration expects a root element named
OpenSplice/DDSI2EService. Within this root element, the networking daemon
will look for several child-elements.
The DDSI2EService element is a strict superset of the DDSI2Service element. This
section documents only the additional settings; please refer to Section 4.7.1.1,
Element DDSI2Service, on page 293, for information on all other options.

i

i

i

345
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

DDSI2E Formats and Units
Please refer to DDSI2 Formats and Units on page 294 for descriptions of the
formats to be used for presenting time, memory size and bandwidth values.

4.7.2.1.1 Attribute name
This attribute identifies the configuration for the DDSI2E Service. Multiple
DDSI2E service configurations can be specified in one single resource. The actual
applicable configuration is determined by the value of the name attribute, which
must match the specified under the element OpenSplice/Service[@name] in the
Domain Service configuration.

4.7.2.1.2 Element Channels
This element is used to group a set of Channels.
The set of channels define the behaviour of the network concerning aspects as
priority and latency budget. By configuring a set of channels, the Networking
service is able to function as a scheduler for the network bandwidth. It achieves this
by using the application-defined DDS QoS policies of the data to select the most
appropriate channel to send the data.

Full path OpenSplice/DDSI2EService
Occurrences (min-max) 0 – *
Child elements Element Channels

Element Security
Element Partitioning
Element Internal

Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/DDSI2EService/name
Format String
Default value
Required false
346
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.2.1 Element Channel
This element specifies all properties of an individual Channel.
The Networking service will make sure messages with a higher priority precede
messages with a lower priority and it uses the latency budget to assemble multiple
messages into one UDP packet where possible, to optimize the bandwidth usage. Of
course, its performance depends heavily on the compatbility of the configured
channels with the used DDS QoS policies of the applications.

4.7.2.1.2.1.1 Attribute name
The name uniquely identifies the channel.

Full path OpenSplice/DDSI2EService/Channels
Occurrences (min-max) 0 – 1
Child elements Element Channel
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Channels/Channel
Occurrences (min-max) 0 – 42
Child elements Element DiffServField

Element QueueSize
Element DataBandwidthLimit
Element AuxiliaryBandwidthLimit

Required attributes <none>
Optional attributes Attribute name

Attribute transportPriority

Full path OpenSplice/DDSI2EService/Channels/Channel/
name

Format String
Default value
Required false
347
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.2.1.2 Attribute transportPriority
This attribute sets the transport priority of the channel.
Messages sent to the network have a transport_priority quality of service
value. Selection of a networking channel is based on the priority requested by the
message and the priority offered by the channel. The priority settings of the different
channels divide the priority range into intervals. Within a channel, messages are
sorted in order of priority.

4.7.2.1.2.1.3 Element DiffServField
This element specifies the DiffServ setting for messages sent via this channel

4.7.2.1.2.1.4 Element QueueSize
This element specifies the number of messages the networking queue can contain.
Messages sent to the network are written into the networking queue. The
networking service will read from this queue. If this queue is full, the writer writing
into the queue is suspended and will retry until success. Note that a full networking
queue is a symptom of an improperly designed system.

Full path OpenSplice/DDSI2EService/Channels/Channel/
transportPriority

Format Integer
Default value 0
Required false

Full path OpenSplice/DDSI2EService/Channels/Channel/
DiffServField

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>
348
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.2.1.5 Element DataBandwidthLimit
This element specifies the maximum network bandwidth used for data on this
channel.

4.7.2.1.2.1.6 Element AuxiliaryBandwidthLimit
This element specifies the maximum used network bandwidth for auxiliary traffic
this channel (e.g. resends, heartbeats, etc.).

Full path OpenSplice/DDSI2EService/Channels/Channel/
QueueSize

Format Integer
Default value 0
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Channels/Channel/
DataBandwidthLimit

Format bandwidth
Default value inf
Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Channels/Channel/
AuxiliaryBandwidthLimit

Format bandwidth
Default value inf
Occurrences (min-max) 0 – 1
349
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.3 Element Security
The Security element specifies DDSI2 security profiles that can be used to encrypt
network partitions.

4.7.2.1.3.1 Element SecurityProfile
Every SecurityProfile has a name, a cipher and cipherKey.

4.7.2.1.3.1.1 Attribute name
A DDSI2 SecuirtyProfile is uniquely identified by its name.

Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Security
Occurrences (min-max) 0 – 1
Child elements Element SecurityProfile
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Security/
SecurityProfile

Occurrences (min-max) 0 – *
Child elements <none>
Required attributes <none>
Optional attributes Attribute name

Attribute cipher
Attribute cipherKey

Full path OpenSplice/DDSI2EService/Security/
SecurityProfile/name
350
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.3.1.2 Attribute cipher
This is a mandatory attribute. Depending on the declared cipher, the cipher key must
have a specific length, 128 bits, 192 bits, 256 bits, or none at all. The following
case-insensitive values are supported by the current implementation:
aes128 – implements AES cipher with 128 bit cipher key (16 Bytes, 32

hexadecimal characters). This cipher will occupy 34 bytes of each UDP packet
being sent.

aes192 – implements the AES cipher with 192 bit cipher-key (24 Bytes, 48
hexadecimal characters). This cipher will occupy 34 bytes of each UDP packet
being sent.

aes256 – implements the AES cipher with 256 bit cipher-key (32 Bytes, 64
hexadecimal characters. This cipher will occupy 34 bytes of each UDP packet
being sent.

blowfish – implements the Blowfish cipher with 128 bit cipher-key (16 Bytes, 32
hexadecimal characters). This cipher will occupy 26 bytes of each UDP packet
being sent.

null – implements the NULL cipher. The only cipher that does not require a
cipherkey. This cipher will occupy 4 bytes of each UDP packet being sent. All
ciphers except for the NULL cipher are combined with SHA1 to achieve data
integrity.

4.7.2.1.3.1.3 Attribute cipherKey
The cipherKey attribute is used to define the secret key required by the declared
cipher. The value can be a URI referencing an external file containing the secret key,
or the secret key can be defined in-place directly as a string value.

Format String
Default value

Required true

Full path OpenSplice/DDSI2EService/Security/
SecurityProfile/cipher

Format String
Default value 0
Required true
351
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

The key must be defined as a hexadecimal string, each character representing 4 bits
of the key; for example, 1ABC represents the 16 bit key 0001 1010 1011 1100.
The key must not follow a well-known pattern and must match exactly the key
length required by the chosen cipher. In the case of malformed cipher-keys, the
security profile in question will be marked as invalid. Moreover, each network
partition referring to the invalid Security Profile will not be operational and thus
traffic will be blocked to prevent information leaks.
As all OpenSplice applications require read access to the XML configuration file,
for security reasons it is recommended to store the secret key in an external file in
the file system, referenced by the URI in the configuration file. The file must be
protected against read and write access from other users on the host. Verify that
access rights are not given to any other user or group on the host. Alternatively,
storing the secret key in-place in the XML configuration file will give read/write
access to all DDS applications joining the same OpenSplice node. Because of this,
the ‘in-place’ method is strongly discouraged.

4.7.2.1.4 Element Partitioning
The Partitioning element specifies DDSI2 network partitions and their
mapping.

4.7.2.1.4.1 Element NetworkPartitions
The NetworkPartitions element specifies the DDSI2 network partitions.

Full path OpenSplice/DDSI2EService/Security/
SecurityProfile/cipherKey

Format String
Default value

Required false

Full path OpenSplice/DDSI2EService/Partitioning
Occurrences (min-max) 0 – 1
Child elements Element NetworkPartitions

Element IgnoredPartitions
Element PartitionMappings

Required attributes <none>
Optional attributes <none>
352
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.4.1.1 Element NetworkPartition
Every NetworkPartition has a name, an address and a connected flag.

4.7.2.1.4.1.1.1 Attribute SecurityProfile
The SecurityProfile optionally specifies the security profile as defined in the
Security section, to be used for this NetworkPartition.

4.7.2.1.4.1.1.2 Attribute name
A DDSI2 NetworkPartition is uniquely identified by its name.

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions

Occurrences (min-max) 0 – *
Child elements Element NetworkPartition
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions/NetworkPartition

Occurrences (min-max) 0 – *
Child elements <none>
Required attributes <none>
Optional attributes Attribute SecurityProfile

Attribute name
Attribute address
Attribute connected

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions/NetworkPartition/
SecurityProfile

Format String
Default value null
Required false
353
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.4.1.1.3 Attribute address
The address is a list of one or more multicast addresses. If more than one is
specified, then the different addresses are separated by commas. Readers that are
mapped to this partition will advertise these multicast addresses as locators, from
which writers will choose the most appropriate.

4.7.2.1.4.1.1.4 Attribute connected
The connected flag is not yet implemented; all configured Network partitions will
connect when needed.

4.7.2.1.4.2 Element IgnoredPartitions
The IgnoredPartitions element specifies the topic/partition combinations that
are not distributed over the network.

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions/NetworkPartition/name

Format String
Default value

Required false

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions/NetworkPartition/address

Format String
Default value

Required false

Full path OpenSplice/DDSI2EService/Partitioning/
NetworkPartitions/NetworkPartition/connected

Format Boolean
Default value true
Valid values true, false
Required false
354
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.4.2.1 Element IgnoredPartition
This element can be used to create a ‘local partition’ that is only available on the
node on which it is specified, and therefor won’t generate network load. Any DCPS
partition/topic combination specified in this element will not be distributed by the
Networking service.

4.7.2.1.4.2.1.1 Attribute DCPSPartitionTopic
The service will match any DCPS messages to the DCPSPartitionTopic
expression and determine whether it matches. The PartitionExpression and
TopicExpression are allowed to contain a ‘*’ wildcard, meaning that anything
matches. An exact match is considered better than a wildcard match. If a DCPS
message matches an expression it will not be sent to the network.

Full path OpenSplice/DDSI2EService/Partitioning/
IgnoredPartitions

Occurrences (min-max) 0 – *
Child elements Element IgnoredPartition
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Partitioning/
IgnoredPartitions/IgnoredPartition

Occurrences (min-max) 0 – *
Child elements <none>
Required attributes <none>
Optional attributes Attribute DCPSPartitionTopic

Full path OpenSplice/DDSI2EService/Partitioning/
IgnoredPartitions/IgnoredPartition/DCPSP

Format String
Default value

Required false
355
Deploying OpenSplice DDS�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.4.3 Element PartitionMappings
The PartitionMappings element specifies the mapping from topic/partitions to
DDSI2 network partitions.

4.7.2.1.4.3.1 Element PartitionMapping
This element specifies a mapping between a network partition and a partition-topic
combination. In order to give networking partitions a meaning in the context of
DCPS, mappings from DCPS partitions and topics onto networking partitions
should be defined. DDSI2 allows for a set of partition mappings to be defined.

4.7.2.1.4.3.1.1 Attribute NetworkPartition
The NetworkPartition attribute of a partition mapping defines that networking
partition that data in a specific DCPS partition of a specific DCPS topic should be
sent to.

Full path OpenSplice/DDSI2EService/Partitioning/
PartitionMappings

Occurrences (min-max) 0 – *
Child elements Element PartitionMapping
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Partitioning/
PartitionMappings/PartitionMapping

Occurrences (min-max) 0 – *
Child elements <none>
Required attributes <none>
Optional attributes Attribute NetworkPartition

Attribute DCPSPartitionTopic

Full path OpenSplice/DDSI2EService/Partitioning/
PartitionMappings/PartitionMapping/net

Format String
Default value

Required false
356
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.7 The DDSI2 and DDSI2 Enhanced Networking Service

4.7.2.1.4.3.1.2 Attribute DCPSPartitionTopic
The service will match any DCPS messages to the DCPSPartitionTopic
expression and determine whether it matches. The PartitionExpression and
TopicExpression are allowed to contain a ‘*’ wildcard, meaning that anything
matches. An exact match is considered better than a wildcard match. For every
DCPS message, the best matching partition is determined and the data is sent over
the corresponding networking part i t ion as specified by the matching
NetworkPartition element.

4.7.2.1.5 Element Internal
The Internal elements deal with a variety of settings that are in no way supported
and may change without notice.

4.7.2.1.5.1 Element AuxiliaryBandwidthLimit
INTERNAL
This element specifies the maximum network bandwidth used for auxiliary data:
ACKNACK, Heartbeat, resends and discovery.

Full path OpenSplice/DDSI2EService/Partitioning/
PartitionMappings/PartitionMapping/DCPSP

Format String
Default value

Required false

Full path OpenSplice/DDSI2EService/Internal
Occurrences (min-max) 0 – 1
Child elements Element AuxiliaryBandwidthLimit
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/DDSI2EService/Internal/
AuxiliaryBandwidthLimit

Format time
Default value inf
357
Deploying OpenSplice DDS�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8 Record and Replay (RnR) Service
The Record and Replay Service enables you to record data from a DDS domain to a
storage, and replay data from a storage back into the DDS domain.

4.8.1 Attribute name
This attribute identifies a configuration for the Record and Replay Service by name.
Multiple service configurations can be specified in one single resource file. The
actual applicable configuration is determined by the value of the name attribute,
which must match the one specified by OpenSplice/Domain/Service[@name] in the
configuration of the Domain Service.

4.8.2 Element Watchdog
This element controls the characteristics of the Watchdog thread.

Occurrences (min-max) 0 – 1
Child elements <none>
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/
Occurrences (min-max) 0 – 0
Child-elements Element Watchdog
Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/RnRService[@name]
Format string
Dimension n/a
Default value rnr
Valid values any string
Required true
358
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.2.1 Element Scheduling
This element specifies the type of OS scheduling class will be used by the thread
that announces its liveliness periodically.

4.8.2.1.1 Element Priority
This element specifies the thread priority that will be used by the Watchdog thread.
Only priorities that are supported by the underlying operating system can be
assigned to this element. The user may need special privileges from the underlying
operating system to be able to assign some of the privileged priorities.

4.8.2.1.1.1 Attribute priority_kind
This attribute specifies whether the specified Priority is a relative or absolute
priority.

Full path OpenSplice/RnRService/Watchdog
Occurrences (min-max) 0 – 1
Child-elements Element Scheduling
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/Watchdog/Scheduling
Occurrences (min-max) 1 – 1
Child-elements Element Priority
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/Watchdog/Scheduling/
Priority

Occurrences (min-max) 0 – 1
Child-elements <none>
Required attributes <none>
Optional attributes Attribute priority_kind

Attribute Class
359
Deploying OpenSplice DDS�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.2.1.1.2 Attribute Class
This attribute specifies the thread scheduling class that will be used by the watchdog
thread. The user may need the appropriate privileges from the underlying operating
system to be able to assign some of the privileged scheduling classes.

4.8.3 Element Storage
This element specifies a storage to use for recording and/or replaying data.
Currently the storage supports the types XML and CDR.
A storage of type XML will store the recorded data in XML format. A storage of
type CDR will store the recorded data in binary CDR format.
Note that storages can also be created, or their properties modified, by Record and
Replay configuration commands. These commands use the same syntax to specify
configuration data as the OpenSplice configuration file, so the description given
here also applies to configuration commands.

Full path OpenSplice/RnRService/Watchdog/Scheduling/
Priority[@priority_kind]

Format string
Dimension n/a
Default value Relative
Valid values Relative, Absolute
Required false

Full path OpenSplice/RnRService/Watchdog/Scheduling/
Priority[@class]

Format string
Dimension n/a
Default value Default
Valid values Default, Timeshare, Realtime
Required true

Full path OpenSplice/RnRService/Storage
Occurrences (min-max) 0 – 0

i

360
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.3.1 Attribute name
The name used to identify the storage in Record and Replay commands.

4.8.3.2 Element rr_storageAttrXML
This element contains attributes describing an XML storage.

4.8.3.2.1 Element filename
The file used to store XML data. The filename may include a relative or absolute
path. If a path is omitted, the storage file is created in the current working directory.

Child-elements Element rr_storageAttrXML
Element rr_storageAttrCDR

Required attributes Attribute name
Optional attributes <none>

Full path OpenSplice/RnRService/Storage[@name]
Format string
Dimension n/a
Default value default
Valid values any string
Required true

Full path OpenSplice/RnRService/Storage/
rr_storageAttrXML

Occurrences (min-max) 0 – 1
Child-elements Element filename
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/Storage/
rr_storageAttrXML/filename

Format string
Default value rnr-storage.dat
Occurrences (min-max) 0 – 1
Required attributes <none>
Optional attributes <none>
361
Deploying OpenSplice DDS�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.3.3 Element rr_storageAttrCDR
This element contains the attributes describing a CDR storage.

4.8.3.3.1 Element filename
The file used to store CDR data. The filename may include a relative or absolute
path. If a path is omitted, the storage file is created in the current working directory.

4.8.3.4 Element Statistics
Maintain and optionally publish statistics for this storage.

4.8.3.4.1 Attribute enabled
This attribute specifies whether statistics should be maintained for this storage.

Full path OpenSplice/RnRService/Storage/
rr_storageAttrCDR

Occurrences (min-max) 0 – 1
Child-elements Element filename
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/Storage/
rr_storageAttrCDR/filename

Format string
Default value rnr-storage.dat
Occurrences (min-max) 0 – 1
Required attributes <none>
Optional attributes <none>

Full path OpenSplice/RnRService/Storage/Statistics
Occurrences (min-max) 0 – 1
Child-elements <none>
Required attributes Attribute enabled

Attribute publish_interval
Optional attributes Attribute reset
362
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.3.4.2 Attribute publish_interval
This attribute specifies the publication interval of the statistics belonging to this
storage, in a Record and Replay storage statistics topic. The publish interval is a
value in seconds but may also be set to -1, which means that the statistics are
published when the storage is closed. Note that a value of 0 means that statistics are
never published for this storage.

4.8.3.4.3 Attribute reset
This attribute enables you to reset the current values of statistics belonging to the
storage. Note that this only makes sense in a configuration command for an existing
storage, since new storages created from the OpenSplice configuration file always
start out with empty statistics.

Full path OpenSplice/RnRService/Storage/Statistics
[@enabled]

Format boolean
Dimension n/a
Default value true
Valid values true, false
Required true

Full path OpenSplice/RnRService/Storage/Statistics
[@publish_interval]

Format Integer
Dimension n/a
Default value 30
Valid values -1, 0, or any positive integer
Required true

Full path OpenSplice/RnRService/Storage/Statistics [@reset]
Format boolean
Dimension n/a
Default value false
Valid values false, true
Required false
363
Deploying OpenSplice DDS�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.4 Element Tracing
This element enables the output of debugging information from the RnR service to a
log file.

4.8.4.1 Attribute OutputFile
This option specifies where the log is printed to. Note that ‘stdout’ is considered a
legal value that represents ‘standard out’ and ‘stderr’ is a legal value representing
‘standard error’.

4.8.4.2 Attribute AppendToFile
This option specifies whether the output is to be appended to an existing log file.
The default is to overwrite the log file if it exists.

Full path OpenSplice/RnRService/Tracing
Occurrences (min-max) 0 – 1
Child-elements <none>
Required attributes Attribute OutputFile
Optional attributes Attribute AppendToFile

Attribute Verbosity
Attribute EnableCategory

Full path OpenSplice/RnRService/Tracing[@OutputFile]
Format string
Dimension file name
Default value rnr.log
Valid values depends on operating system
Required true

Full path OpenSplice/RnRService/Tracing[@AppendToFile]
Format boolean
Dimension n/a
Default value false
Valid values false, true
Required false
364
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.8 Record and Replay (RnR) Service

4.8.4.3 Attribute Verbosity
This option specifies the verbosity level of the logging information. The higher the
level, the more (detailed) information will be logged.

4.8.4.4 Attribute EnableCategory
This option enables logging levels for categories independently of the
categories selected by specifiying a verbosity level.
Multiple categories, seperated by a comma, can be supplied.
The following categories are available:
FATAL: Errors that are potentially fatal for the correct operation of the service.
ERROR: Non-fatal errors.
WARNING: Warnings that indicate for example incorrect or unsupported usage of

the service.
INFO: Descriptive messages, logged when certain important events occur.
CONFIG: Events related to the service configuration.
TRACE: Detailed messages describing the behaviour of the service.
RECORD: Messages for each recorded sample.
REPLAY: Messages for each replayed sample.

Full path OpenSplice/RnRService/Tracing[@Verbosity]
Format enumeration
Dimension n/a
Default value INFO
Valid values SEVERE, WARNING, INFO, CONFIG, FINE,

FINER, FINEST, NONE
Required false

Full path OpenSplice/RnRService/Tracing
[@EnableCategory]

Format enumeration
Dimension n/a
Default value <none>
Valid values FATAL, ERROR, WARNING, INFO, CONFIG,

TRACE, RECORD, REPLAY
Required false
365
Deploying OpenSplice DDS�������	

4 Service Configuration 4.9 Example Reference Systems

4.9 Example Reference Systems
The OpenSplice middleware can be deployed for different kinds of systems. This
section identifies several different systems that will be used as reference systems
throughout the rest of this manual. Each needs to be configured differently in order
to fit its requirements. The intention of this section is to give the reader an
impression of the possible differences in system requirements and the configuration
aspects induced.

4.9.1 Zero Configuration System
The OpenSplice middleware comes with a default configuration file that is intended
to give a satisfactory out-of-the-box experience. It suits the standard situation of a
system containing a handful of nodes with only a few applications per node
(enabling standalone ‘single-process’ deployment) and where requirements on data
distribution latencies, volumes and determinism are not too demanding (enabling
use of the standard DDSI networking service).
Starting and running any systems that satisfy these conditions should not be a
problem. Nodes can be started and shutdown without any extra configuration
because the default discovery mechanism will keep track of the networking
topology.

4.9.2 Single Node System
Systems that have to run as a federation on a single node can be down-scaled
considerably by not starting the networking and durability daemons. The
networking daemon is obviously not needed because its responsibility is forwarding
data to and from the network, which is not present. The durability daemon is not
needed because the OpenSplice libraries themselves are capable of handling durable
data on a single node.
Note that this is not the case for single process deployments. Multiple single process
applications that are running on the same machine node can only communicate
when there is a networking service running within each process. This is because
there is no shared administration between the applications, unlike for the shared
memory deployments when a networking service is not required for a single node
system.
With a single node system, the OpenSplice services do not have much influence on
application behaviour. The application has full control over its own thread priorities
and all OpenSplice activities will be executed in the scope of the application
threads.
One exception to this is the listener thread. This thread is responsible for calling
listener functions as described in the DDS specification.
366
Deploying OpenSplice DDS

�������	

4 Service Configuration 4.9 Example Reference Systems

4.9.3 Medium Size Static (Near) Real-time System
Many medium size systems have highly demanding requirements with respect to
data distribution latencies, volumes and predictability. Such systems require
configuration and tuning at many levels. The OpenSplice middleware will be an
important player in the system and therefore is highly configurable in order to meet
these requirements. Every section reflects on an aspect of the configuration.

4.9.3.1 High Volumes
The OpenSplice middleware architecture is designed for efficiently transporting
many small messages. The networking service is capable of packing messages from
different writing applications into one network packet. For this, the latency budget
quality of service should be applied. A latency budget allows the middleware to
optimise on throughput. Messages will be collected and combined during an interval
allowed by the latency budget. This concerns networking traffic only.
A network channel that has to support high volumes should be configured to do so.
By default, the resolution parameter is set to 50 ms. This means that latency budget
values will be truncated to multiples of 50 ms, which is a suitable value. For
efficient packing, the FragmentSize should be set to a large value, for example 8000.
This means that data will be sent to the network in chunks of 8 kilobytes. A good
value for MaxBurstSize depends on the speed of the attached network and on the
networking load. If several writers start writing simultaneously at full speed during
a longer period, receiving nodes could start losing packets. Therefore, the writers
might need to be slowed down to a suitable speed.
Note that message with a large latency budget might be overtaken by messages with
a smaller latency budget, especially if they are transported via different networking
channels.

4.9.3.2 Low Latencies
If messages are to be transported with requirements on their end to end times, a zero
latency budget quality of service should be attached. This results in an immediate
wake-up of the networking service at the moment that the message arrives in a
networking queue. For optimal results with respect to end-to-end latencies, the
thread priority of the corresponding networkChannel should be higher than the
thread priority of the writing application. with the current implementation, a context
switch between the writing application and the networking channel is always
required. With the correct priorities, the induced latency is minimized.
The value of the Resolution parameter has its consequences for using latency
budgets. The networking service will ignore any latency budgets that have a value
smaller than Resolution.
367
Deploying OpenSplice DDS�������	

4 Service Configuration 4.9 Example Reference Systems

The effect of sending many messages with a zero latency budget is an increase of
CPU load. The increasing number of context switches require extra processing. This
quality of service should therefore be consciously used.

4.9.3.3 Responsiveness
Especially with respect to reliable transport over the network, responsiveness is an
important aspect. Whenever a reliably sent message is lost on the network, the
sending node has to initiate a resend. Since OpenSplice networking uses an
acknowledgement protocol, it is the up to the sending side to decide when to resend
a message. This behaviour can be tuned.
First of all, the Resolution parameter is important. This parameter gives the interval
at which is checked if any messages have to be resent. The RecoveryFactor
parameter indicates how many of these checks have to be executed before actually
resending a message. If Resolution is scaled down, messages will be resent earlier.
If Recovery factor is scaled down, messages will be resent earlier as well.

4.9.3.4 Topology Discovery
OpenSplice RT-Networking Service implements a discovery protocol for
discovering other nodes in the system. As long as only one node is present, nothing
has to be sent to the network. As soon as at least two nodes are present, networking
starts sending data to the network. The node-topology detection also allows for
quick reaction to topology changes, such as when a publishing node disappears (due
to a disconnection or a node crash); a ‘tightly-configured’ discovery allows for swift
detection of such topology changes, and related updating of DDS-level liveliness
administration.
368
Deploying OpenSplice DDS

�������	

	OpenSplice DDS
	Table of Contents
	Preface
	About the Deployment Guide
	Contacts

	Deploying OpenSplice DDS
	1 OpenSplice DDS Overview
	1.1 The OpenSplice DDS Architecture
	1.1.1 Single Process architecture
	1.1.2 Shared Memory architecture
	1.1.3 Comparison of Deployment Architectures
	1.1.4 Configuring and Using the Deployment Architectures

	1.2 OpenSplice DDS Usage
	1.2.1 Starting OpenSplice DDS for a Single Process Deployment
	1.2.2 Starting OpenSplice DDS for a Shared Memory Deployment
	1.2.3 Monitoring
	1.2.3.1 Diagnostic Messages
	1.2.3.2 OpenSplice Tuner
	1.2.3.3 OpenSplice Memory Management Statistics Monitor

	1.2.4 Stopping OpenSplice DDS
	1.2.4.1 Stopping a Single Process deployment
	1.2.4.2 Stopping a Shared Memory deployment
	1.2.4.2.1 Stopping OSPL by using signals
	1.2.4.2.2 Stopping Applications in Shared Memory Mode

	1.2.5 Deploying OpenSplice DDS on VxWorks 6.x
	1.2.6 Deploying OpenSplice DDS on Integrity
	1.2.7 Installing/Uninstalling the OpenSplice DDS C# Assembly to the Global Assembly Cache
	1.2.7.1 Installing the C# Assembly to the Global Assembly Cache
	1.2.7.2 Uninstalling the C# Assembly from the Global Assembly Cache

	1.3 OpenSplice DDS Configuration
	1.3.1 Configuration Files
	1.3.2 Environment Variables
	1.3.2.1 The OSPL_URI environment variable

	1.3.3 Configuration of Single Process deployment
	1.3.4 Configuration of Shared Memory deployment
	1.3.5 Temporary Files

	1.4 Applications which operate in multiple domains
	1.4.1 Interaction with a Networking Service

	2 The OpenSplice DDS Services
	2.1 Introduction
	2.2 The Domain Service
	2.3 The Durability Service
	2.3.1 Purpose
	2.3.2 Concepts
	2.3.2.1 Role and scope
	2.3.2.2 Name-spaces
	2.3.2.3 Name-space policies
	2.3.2.3.1 Alignment policy
	2.3.2.3.2 Durability policy
	2.3.2.3.3 Delayed alignment policy
	2.3.2.3.4 Merge policy

	2.3.2.4 Dynamic name-spaces
	2.3.2.5 Master/slave

	2.3.3 Mechanisms
	2.3.3.1 Interaction with other durability services
	2.3.3.2 Interaction with other OpenSplice services
	2.3.3.3 Interaction with applications
	2.3.3.4 Parallel alignment
	2.3.3.5 Tracing

	2.3.4 Lifecycle
	2.3.4.1 Determine connectivity
	2.3.4.2 Determine compatibility
	2.3.4.3 Master selection
	2.3.4.4 Persistent data injection
	2.3.4.5 Discover historical data
	2.3.4.6 Align historical data
	2.3.4.7 Provide historical data
	2.3.4.8 Merge historical data

	2.4 The Networking Service
	2.4.1 The Native Networking Service
	2.4.2 The Secure Native Networking Service

	2.5 The DDSI2 and DDSI2E Networking Services
	2.5.1 DDSI Concepts
	2.5.1.1 Mapping of DCPS domains to DDSI domains
	2.5.1.2 Mapping of DCPS entities to DDSI entities
	2.5.1.3 Reliable communication
	2.5.1.4 DDSI-specific transient-local behaviour
	2.5.1.5 Discovery of participants & endpoints

	2.5.2 OpenSplice DDSI2 specifics
	2.5.2.1 Translating between OpenSplice and DDSI
	2.5.2.2 Federated versus Standalone deployment
	2.5.2.3 Discovery behaviour
	2.5.2.3.1 Local discovery and built-in topics
	2.5.2.3.2 Proxy participants and endpoints
	2.5.2.3.3 Sharing of discovery information
	2.5.2.3.4 Lingering writers
	2.5.2.3.5 Start-up mode

	2.5.2.4 Writer history QoS and throttling
	2.5.2.5 Unresponsive readers & head-of-stream blocking
	2.5.2.6 Handling of multiple partitions and wildcards
	2.5.2.6.1 Publishing in multiple partitions
	2.5.2.6.2 Wildcard partitions

	2.5.3 Network and discovery configuration
	2.5.3.1 Networking interfaces
	2.5.3.1.1 Multicasting
	2.5.3.1.2 Discovery configuration
	2.5.3.1.3 Discovery addresses
	2.5.3.1.4 Asymmetrical discovery
	2.5.3.1.5 Timing of SPDP packets
	2.5.3.1.6 Endpoint discovery

	2.5.3.2 Combining multiple participants
	2.5.3.3 Controlling port numbers
	2.5.3.4 Coexistence with OpenSplice RTNetworking

	2.5.4 Data path configuration
	2.5.4.1 Data path architecture
	2.5.4.2 Transmit-side configuration
	2.5.4.2.1 Transmit processing
	2.5.4.2.2 Retransmit merging
	2.5.4.2.3 Retransmit backlogs
	2.5.4.2.4 Controlling fragmentation

	2.5.4.3 Receive-side configuration
	2.5.4.3.1 Receive processing
	2.5.4.3.2 Minimising receive latency

	2.5.4.4 Direction-independent settings
	2.5.4.4.1 Maximum sample size

	2.5.5 DDSI2E Enhanced features
	2.5.5.1 Introduction
	2.5.5.2 Channel configuration
	2.5.5.2.1 Overview
	2.5.5.2.2 Transmit side
	2.5.5.2.3 Receive side
	2.5.5.2.4 Discovery traffic
	2.5.5.2.5 On interoperability

	2.5.5.3 Network partition configuration
	2.5.5.3.1 Overview
	2.5.5.3.2 Matching rules
	2.5.5.3.3 Multiple matching mappings
	2.5.5.3.4 On interoperability

	2.5.5.4 Encryption configuration
	2.5.5.4.1 Overview
	2.5.5.4.2 On interoperability

	2.5.6 Thread configuration
	2.5.7 Reporting and tracing
	2.5.8 Compression
	2.5.8.1 Availability
	2.5.8.2 How to set the level parameter in zlib
	2.5.8.3 How to switch to other built-in compressors
	2.5.8.4 How to write a plugin for another compression library
	2.5.8.5 How to configure for a plugin
	2.5.8.6 Constraints

	2.5.9 Compatibility and conformance
	2.5.9.1 Conformance modes
	2.5.9.1.1 Compatibility issues with RTI
	2.5.9.1.2 Compatibility issues with TwinOaks

	2.6 The Tuner Service
	2.7 The DbmsConnect Service
	2.7.1 Usage
	2.7.1.1 DDS and DBMS Concepts and Types Mapping
	2.7.1.2 General DbmsConnect Concepts
	2.7.1.3 DDS to DBMS Use Case
	2.7.1.4 DBMS to DDS Use Case
	2.7.1.5 Replication Use Case

	3 Tools
	3.1 Introduction
	3.2 osplconf: the OpenSplice Configuration editor
	3.3 ospl: the OpenSplice service manager
	3.4 mmstat: Memory Management Statistics
	3.4.1 The memory statistics mode
	3.4.2 The memory statistics difference mode
	3.4.3 The meta-object references mode
	3.4.4 The meta-object references difference mode

	4 Service Configuration
	4.1 Introduction
	4.2 The Domain Service
	4.2.1 Element Id
	4.2.2 Element Name
	4.2.3 Element CPUAffinity
	4.2.4 Element Role
	4.2.5 Element Lease
	4.2.5.1 Element ExpiryTime
	4.2.5.1.1 Attribute update_factor

	4.2.6 Element ServiceTerminatePeriod
	4.2.7 Element SingleProcess
	4.2.8 Element Database
	4.2.8.1 Element Size
	4.2.8.2 Element Threshold
	4.2.8.3 Element Address
	4.2.8.4 Element Locking

	4.2.9 Element Service
	4.2.9.1 Attribute name
	4.2.9.2 Attribute enabled
	4.2.9.3 Element Command
	4.2.9.4 Element MemoryPoolSize
	4.2.9.5 Element HeapSize
	4.2.9.6 Element StackSize
	4.2.9.7 Element Configuration
	4.2.9.8 Element Scheduling
	4.2.9.8.1 Element Class
	4.2.9.8.2 Element Priority
	4.2.9.8.2.1 Attribute priority_kind

	4.2.9.9 Element Locking
	4.2.9.10 Element FailureAction

	4.2.10 Element Application
	4.2.10.1 Attribute name
	4.2.10.2 Attribute enabled
	4.2.10.3 Element Command
	4.2.10.4 Element Library
	4.2.10.5 Element Arguments

	4.2.11 Element Listeners
	4.2.11.1 Element StackSize

	4.2.12 Element BuiltinTopics
	4.2.12.1 Attribute enabled

	4.2.13 Element PriorityInheritance
	4.2.13.1 Attribute enabled

	4.2.14 Element Statistics
	4.2.14.1 Element Category
	4.2.14.1.1 Attribute name
	4.2.14.1.2 Attribute enable

	4.2.15 Element ReportPlugin
	4.2.15.1 Element Library
	4.2.15.1.1 Attribute file_name

	4.2.15.2 Element Initialize
	4.2.15.2.1 Attribute symbol_name
	4.2.15.2.2 Attribute argument

	4.2.15.3 Element Report
	4.2.15.3.1 Attribute symbol_name

	4.2.15.4 Element TypedReport
	4.2.15.4.1 Attribute symbol_name

	4.2.15.5 Element Finalize
	4.2.15.5.1 Attribute symbol_name

	4.2.15.6 Element SuppressDefaultLogs

	4.2.16 Element PartitionAccess
	4.2.16.1 Attribute partition_expression
	4.2.16.2 Attribute access_mode

	4.2.17 Element TopicAccess
	4.2.17.1 Attribute topic_expression
	4.2.17.2 Attribute access_mode

	4.2.18 Element ResourceLimits
	4.2.18.1 Element MaxSamples
	4.2.18.1.1 Element WarnAt

	4.2.18.2 Element MaxInstances
	4.2.18.2.1 Element WarnAt

	4.2.18.3 Element MaxSamplesPerInstance
	4.2.18.3.1 Element WarnAt

	4.2.19 Element Report
	4.2.19.1 Attribute append
	4.2.19.2 Attribute verbosity

	4.2.20 Element Daemon
	4.2.20.1 Element Locking
	4.2.20.2 Element KernelManager
	4.2.20.2.1 Element Scheduling
	4.2.20.2.1.1 Element Class
	4.2.20.2.1.2 Element Priority
	4.2.20.2.1.2.1 Attribute priority_kind

	4.2.20.3 Element GarbageCollector
	4.2.20.3.1 Element Scheduling
	4.2.20.3.1.1 Element Class
	4.2.20.3.1.2 Element Priority
	4.2.20.3.1.2.1 Attribute priority_kind

	4.2.20.4 Element ResendManager
	4.2.20.4.1 Element Scheduling
	4.2.20.4.1.1 Element Class
	4.2.20.4.1.2 Element Priority
	4.2.20.4.1.2.1 Attribute priority_kind

	4.2.20.5 Element Watchdog
	4.2.20.5.1 Element Scheduling
	4.2.20.5.1.1 Element Class
	4.2.20.5.1.2 Element Priority

	4.2.20.6 Element Heartbeat
	4.2.20.6.1 Attribute transport_priority
	4.2.20.6.2 Element ExpiryTime
	4.2.20.6.2.1 Attribute update_factor

	4.2.20.6.3 Element Scheduling
	4.2.20.6.3.1 Element Class
	4.2.20.6.3.2 Element Priority
	4.2.20.6.3.2.1 Attribute priority_kind

	4.2.21 Element GeneralWatchdog
	4.2.21.1 Element Scheduling
	4.2.21.1.1 Element Class
	4.2.21.1.2 Element Priority

	4.2.22 Element UserClockService
	4.2.22.1 Element UserClockModule
	4.2.22.2 Element UserClockStart
	4.2.22.2.1 Attribute name

	4.2.22.3 Element UserClockStop
	4.2.22.3.1 Attribute name

	4.2.22.4 Element UserClockQuery
	4.2.22.4.1 Attribute name

	4.3 The Durability Service
	4.3.1 Attribute name
	4.3.2 Element Network
	4.3.2.1 Attribute latency_budget
	4.3.2.2 Attribute transport_priority
	4.3.2.3 Element Heartbeat
	4.3.2.3.1 Attribute latency_budget
	4.3.2.3.2 Attribute transport_priority
	4.3.2.3.3 Element ExpiryTime
	4.3.2.3.3.1 Attribute update_factor

	4.3.2.3.4 Element Scheduling
	4.3.2.3.4.1 Element Class
	4.3.2.3.4.2 Element Priority
	4.3.2.3.4.2.1 Attribute priority_kind

	4.3.2.4 Element InitialDiscoveryPeriod
	4.3.2.5 Element Alignment
	4.3.2.5.1 Attribute latency_budget
	4.3.2.5.2 Attribute transport_priority
	4.3.2.5.3 Element TimeAlignment
	4.3.2.5.4 Element AlignerScheduling
	4.3.2.5.4.1 Element Class
	4.3.2.5.4.2 Element Priority
	4.3.2.5.4.2.1 Attribute priority_kind

	4.3.2.5.5 Element AligneeScheduling
	4.3.2.5.5.1 Element Class
	4.3.2.5.5.2 Element Priority
	4.3.2.5.5.2.1 Attribute priority_kind

	4.3.2.5.6 Element RequestCombinePeriod
	4.3.2.5.6.1 Element Initial
	4.3.2.5.6.2 Element Operational

	4.3.2.5.7 Element TimeToWaitForAligner

	4.3.2.6 Element WaitForAttachment
	4.3.2.6.1 Attribute maxWaitCount
	4.3.2.6.2 Element ServiceName

	4.3.3 Element Persistent
	4.3.3.1 Element StoreDirectory
	4.3.3.2 Element StoreMode
	4.3.3.3 Element StoreSessionTime
	4.3.3.4 Element StoreSleepTime
	4.3.3.5 Element StoreOptimizeInterval
	4.3.3.6 Element Scheduling
	4.3.3.6.1 Element Class
	4.3.3.6.2 Element Priority
	4.3.3.6.2.1 Attribute priority_kind

	4.3.3.7 Element MemoryMappedFileStore
	4.3.3.7.1 Element Size
	4.3.3.7.2 Element Address

	4.3.3.8 Element SmpCount
	4.3.3.9 Element KeyValueStore
	4.3.3.9.1 Attribute type
	4.3.3.9.2 Element ConfigParameters

	4.3.4 Element NameSpaces
	4.3.4.1 Element NameSpace
	4.3.4.1.1 Attribute name
	4.3.4.1.2 Element Partition
	4.3.4.1.3 Element PartitionTopic

	4.3.4.2 Element Policy
	4.3.4.2.1 Attribute nameSpace
	4.3.4.2.2 Attribute delayedAlignment
	4.3.4.2.3 Element Merge
	4.3.4.2.3.1 Attribute type
	4.3.4.2.3.2 Attribute scope

	4.3.4.2.4 Attribute durability
	4.3.4.2.5 Attribute alignee
	4.3.4.2.6 Attribute aligner

	4.3.5 Element Watchdog
	4.3.5.1 Element Scheduling
	4.3.5.1.1 Element Class
	4.3.5.1.2 Element Priority
	4.3.5.1.2.1 Attribute priority_kind

	4.3.6 Element EntityNames
	4.3.6.1 Element Publisher
	4.3.6.2 Element Subscriber
	4.3.6.3 Element Partition

	4.3.7 Element Tracing
	4.3.7.1 Attribute synchronous
	4.3.7.2 Element OutputFile
	4.3.7.3 Element Timestamps
	4.3.7.3.1 Attribute Absolute

	4.3.7.4 Element Verbosity

	4.4 The Network and the Secure Network Service
	4.4.1 The Network Service
	4.4.1.1 Attribute name
	4.4.1.2 Element Watchdog
	4.4.1.2.1 Element Scheduling
	4.4.1.2.1.1 Element Class
	4.4.1.2.1.2 Element Priority
	4.4.1.2.1.2.1 Attribute priority_kind

	4.4.1.3 Element General
	4.4.1.3.1 Element NetworkInterfaceAddress
	4.4.1.3.1.1 Attribute forced
	4.4.1.3.1.2 Attribute ipv6

	4.4.1.3.2 Element Reconnection
	4.4.1.3.2.1 Attribute allowed

	4.4.1.3.3 Element EnableMulticastLoopback

	4.4.1.4 Element Partitioning
	4.4.1.4.1 Element GlobalPartition
	4.4.1.4.1.1 Attribute Address
	4.4.1.4.1.2 Attribute MulticastTimeToLive

	4.4.1.4.2 Element NetworkPartitions
	4.4.1.4.2.1 Element NetworkPartition
	4.4.1.4.2.1.1 Attribute Address
	4.4.1.4.2.1.2 Attribute Connected
	4.4.1.4.2.1.3 Attribute Name
	4.4.1.4.2.1.4 Attribute Compression
	4.4.1.4.2.1.5 Attribute MulticastTimeToLive

	4.4.1.4.3 Element IgnoredPartitions
	4.4.1.4.3.1 Element IgnoredPartition
	4.4.1.4.3.1.1 Attribute DCPSPartitionTopic

	4.4.1.4.4 Element PartitionMappings
	4.4.1.4.4.1 Element PartitionMapping
	4.4.1.4.4.1.1 Attribute DCPSPartitionTopic
	4.4.1.4.4.1.2 Attribute NetworkPartition

	4.4.1.5 Element Channels
	4.4.1.5.1 Element Channel
	4.4.1.5.1.1 Attribute name
	4.4.1.5.1.2 Attribute reliable
	4.4.1.5.1.3 Attribute enabled
	4.4.1.5.1.4 Attribute default
	4.4.1.5.1.5 Attribute priority
	4.4.1.5.1.6 Element PortNr
	4.4.1.5.1.7 Element AllowedPorts
	4.4.1.5.1.8 Element FragmentSize
	4.4.1.5.1.9 Element Resolution
	4.4.1.5.1.10 Element AdminQueueSize
	4.4.1.5.1.11 Element Sending
	4.4.1.5.1.11.1 Element CrcCheck
	4.4.1.5.1.11.2 Element QueueSize
	4.4.1.5.1.11.3 Element MaxBurstSize
	4.4.1.5.1.11.4 Element ThrottleLimit
	4.4.1.5.1.11.5 Element ThrottleThreshold
	4.4.1.5.1.11.6 Element MaxRetries
	4.4.1.5.1.11.7 Element RecoveryFactor
	4.4.1.5.1.11.8 Element DiffServField
	4.4.1.5.1.11.9 Element DontRoute
	4.4.1.5.1.11.10 Element TimeToLive
	4.4.1.5.1.11.11 Element Scheduling
	4.4.1.5.1.11.11.1 Element Class
	4.4.1.5.1.11.11.2 Element Priority
	4.4.1.5.1.11.11.2.1 Attribute priority_kind

	4.4.1.5.1.12 Element Receiving
	4.4.1.5.1.12.1 Element CrcCheck
	4.4.1.5.1.12.2 Element ReceiveBufferSize
	4.4.1.5.1.12.3 Element Scheduling
	4.4.1.5.1.12.3.1 Element Class
	4.4.1.5.1.12.3.2 Element Priority
	4.4.1.5.1.12.3.2.1 Attribute priority_kind

	4.4.1.5.1.12.4 Element DefragBufferSize
	4.4.1.5.1.12.5 Element SMPOptimization
	4.4.1.5.1.12.5.1 Attribute enabled

	4.4.1.5.1.12.6 Element MaxReliabBacklog
	4.4.1.5.1.12.7 Element PacketRetentionPeriod
	4.4.1.5.1.12.8 Element ReliabilityRecoveryPeriod

	4.4.1.5.2 Element AllowedPorts

	4.4.1.6 Element Discovery
	4.4.1.6.1 Attribute enabled
	4.4.1.6.2 Attribute Scope
	4.4.1.6.3 Element PortNr
	4.4.1.6.4 Element ProbeList
	4.4.1.6.5 Element Sending
	4.4.1.6.5.1 Element Interval
	4.4.1.6.5.2 Element SafetyFactor
	4.4.1.6.5.3 Element SalvoSize
	4.4.1.6.5.4 Element Scheduling
	4.4.1.6.5.4.1 Element Class
	4.4.1.6.5.4.2 Element Priority
	4.4.1.6.5.4.2.1 Attribute priority_kind

	4.4.1.6.6 Element Receiving
	4.4.1.6.6.1 Element DeathDetectionCount
	4.4.1.6.6.2 Element ReceiveBufferSize
	4.4.1.6.6.3 Element Scheduling
	4.4.1.6.6.3.1 Element Class
	4.4.1.6.6.3.2 Element Priority
	4.4.1.6.6.3.2.1 Attribute priority_kind

	4.4.1.7 Element Tracing
	4.4.1.7.1 Element OutputFile
	4.4.1.7.2 Element Timestamps
	4.4.1.7.2.1 Attribute Absolute

	4.4.1.7.3 Element Categories
	4.4.1.7.3.1 Element Default
	4.4.1.7.3.2 Element Configuration
	4.4.1.7.3.3 Element Construction
	4.4.1.7.3.4 Element Destruction
	4.4.1.7.3.5 Element Mainloop
	4.4.1.7.3.6 Element Groups
	4.4.1.7.3.7 Element Send
	4.4.1.7.3.8 Element Receive
	4.4.1.7.3.9 Element Throttling
	4.4.1.7.3.10 Element Test
	4.4.1.7.3.11 Element Discovery

	4.4.1.8 Element Compression
	4.4.1.8.1 Attribute PluginLibrary
	4.4.1.8.2 Attribute PluginInitFunction
	4.4.1.8.3 Attribute PluginParameter

	4.4.2 The Secure Network Service
	4.4.2.1 Element Partitioning
	4.4.2.1.1 Element GlobalPartition
	4.4.2.1.1.1 Attribute Address
	4.4.2.1.1.2 Attribute SecurityProfile

	4.4.2.1.2 Element NetworkPartitions
	4.4.2.1.2.1 Element NetworkPartition
	4.4.2.1.2.1.1 Attribute Address
	4.4.2.1.2.1.2 Attribute Connected
	4.4.2.1.2.1.3 Attribute SecurityProfile

	4.4.2.2 Element Security
	4.4.2.2.1 Attribute enabled
	4.4.2.2.2 Element SecurityProfile
	4.4.2.2.2.1 Attribute Name
	4.4.2.2.2.2 Attribute Cipher
	4.4.2.2.2.3 Attribute cipherKey

	4.4.2.2.3 Element AccessControl
	4.4.2.2.3.1 Attribute enabled
	4.4.2.2.3.2 Attribute policy
	4.4.2.2.3.3 Element AccessControlModule
	4.4.2.2.3.3.1 Attribute enabled
	4.4.2.2.3.3.2 Attribute type

	4.4.2.2.4 Element Authentication
	4.4.2.2.4.1 Attribute enabled
	4.4.2.2.4.2 Element X509Authentication
	4.4.2.2.4.2.1 Element Credentials
	4.4.2.2.4.2.1.1 Element Key
	4.4.2.2.4.2.1.2 Element Cert

	4.4.2.2.4.2.2 Element TrustedCertificates

	4.5 The Tuner Service
	4.5.1 Attribute name
	4.5.2 Element Client
	4.5.2.1 Element LeasePeriod
	4.5.2.2 Element MaxClients
	4.5.2.3 Element MaxThreadsPerClient
	4.5.2.4 Element Scheduling
	4.5.2.4.1 Element Class
	4.5.2.4.2 Element Priority
	4.5.2.4.2.1 Attribute priority_kind

	4.5.3 Element Server
	4.5.3.1 Element Backlog
	4.5.3.2 Element PortNr
	4.5.3.3 Element Verbosity

	4.5.4 Element GarbageCollector
	4.5.4.1 Element Scheduling
	4.5.4.1.1 Element Class
	4.5.4.1.2 Element Priority
	4.5.4.1.2.1 Attribute priority_kind

	4.5.5 Element LeaseManagement
	4.5.5.1 Element Scheduling
	4.5.5.1.1 Element Class
	4.5.5.1.2 Element Priority
	4.5.5.1.2.1 Attribute priority_kind

	4.5.6 Element Watchdog
	4.5.6.1 Element Scheduling
	4.5.6.1.1 Element Class
	4.5.6.1.2 Element Priority
	4.5.6.1.2.1 Attribute priority_kind

	4.6 The DbmsConnect Service
	4.6.1 Attribute name
	4.6.2 Element DdsToDbms
	4.6.2.1 Attribute replication_mode
	4.6.2.2 Element NameSpace
	4.6.2.2.1 Attribute dsn
	4.6.2.2.2 Attribute usr
	4.6.2.2.3 Attribute pwd
	4.6.2.2.4 Attribute name
	4.6.2.2.5 Attribute partition
	4.6.2.2.6 Attribute topic
	4.6.2.2.7 Attribute schema
	4.6.2.2.8 Attribute catalog
	4.6.2.2.9 Attribute replication_mode
	4.6.2.2.10 Attribute update_frequency
	4.6.2.2.11 Attribute odbc
	4.6.2.2.12 Element Mapping
	4.6.2.2.12.1 Attribute topic
	4.6.2.2.12.2 Attribute table
	4.6.2.2.12.3 Attribute query
	4.6.2.2.12.4 Attribute filter

	4.6.3 Element DbmsToDds
	4.6.3.1 Attribute event_table_policy
	4.6.3.2 Attribute publish_initial_data
	4.6.3.3 Attribute replication_user
	4.6.3.4 Attribute trigger_policy
	4.6.3.5 Element NameSpace
	4.6.3.5.1 Attribute dsn
	4.6.3.5.2 Attribute usr
	4.6.3.5.3 Attribute pwd
	4.6.3.5.4 Attribute name
	4.6.3.5.5 Attribute partition
	4.6.3.5.6 Attribute table
	4.6.3.5.7 Attribute schema
	4.6.3.5.8 Attribute catalog
	4.6.3.5.9 Attribute force_key_equality
	4.6.3.5.10 Attribute event_table_policy
	4.6.3.5.11 Attribute publish_initial_data
	4.6.3.5.12 Attribute replication_user
	4.6.3.5.13 Attribute trigger_policy
	4.6.3.5.14 Attribute update_frequency
	4.6.3.5.15 Attribute odbc
	4.6.3.5.16 Element Mapping
	4.6.3.5.16.1 Attribute table
	4.6.3.5.16.2 Attribute topic
	4.6.3.5.16.3 Attribute query
	4.6.3.5.16.4 Attribute force_key_equality
	4.6.3.5.16.5 Attribute event_table_policy
	4.6.3.5.16.6 Attribute publish_initial_data
	4.6.3.5.16.7 Attribute trigger_policy

	4.6.4 Element Tracing
	4.6.4.1 Element OutputFile
	4.6.4.2 Element Timestamps
	4.6.4.2.1 Attribute Absolute

	4.6.4.3 Element Verbosity

	4.6.5 Element Watchdog
	4.6.5.1 Element Scheduling
	4.6.5.1.1 Element Class
	4.6.5.1.2 Element Priority

	4.7 The DDSI2 and DDSI2 Enhanced Networking Service
	4.7.1 The DDSI2 Networking Service
	4.7.1.1 Element DDSI2Service
	4.7.1.1.1 Attribute name
	4.7.1.1.2 Element Threads
	4.7.1.1.2.1 Element Thread
	4.7.1.1.2.1.1 Attribute name
	4.7.1.1.2.1.2 Element StackSize
	4.7.1.1.2.1.3 Element Scheduling
	4.7.1.1.2.1.3.1 Element Class
	4.7.1.1.2.1.3.2 Element Priority

	4.7.1.1.3 Element Sizing
	4.7.1.1.3.1 Element EndpointsInSystem
	4.7.1.1.3.2 Element NetworkQueueSize
	4.7.1.1.3.3 Element ReceiveBufferSize
	4.7.1.1.3.4 Element ReceiveBufferChunkSize
	4.7.1.1.3.5 Element LocalEndpoints

	4.7.1.1.4 Element Compatibility
	4.7.1.1.4.1 Element ArrivalOfDataAssertsPpAndEpLiveliness
	4.7.1.1.4.2 Element AckNackNumbitsEmptySet
	4.7.1.1.4.3 Element RespondToRtiInitZeroAckWithInvalidHeartbeat
	4.7.1.1.4.4 Element AssumeRtiHasPmdEndpoints
	4.7.1.1.4.5 Element StandardsConformance
	4.7.1.1.4.6 Element ExplicitlyPublishQosSetToDefault
	4.7.1.1.4.7 Element ManySocketsMode

	4.7.1.1.5 Element Discovery
	4.7.1.1.5.1 Element SPDPMulticastAddress
	4.7.1.1.5.2 Element SPDPInterval
	4.7.1.1.5.3 Element DomainId
	4.7.1.1.5.4 Element ParticipantIndex
	4.7.1.1.5.5 Element Ports
	4.7.1.1.5.5.1 Element MulticastMetaOffset
	4.7.1.1.5.5.2 Element UnicastMetaOffset
	4.7.1.1.5.5.3 Element MulticastDataOffset
	4.7.1.1.5.5.4 Element UnicastDataOffset
	4.7.1.1.5.5.5 Element Base
	4.7.1.1.5.5.6 Element DomainGain
	4.7.1.1.5.5.7 Element ParticipantGain

	4.7.1.1.5.6 Element Peers
	4.7.1.1.5.6.1 Element Peer
	4.7.1.1.5.6.1.1 Attribute address

	4.7.1.1.6 Element Tracing
	4.7.1.1.6.1 Element Timestamps
	4.7.1.1.6.1.1 Attribute absolute

	4.7.1.1.6.2 Element AppendToFile
	4.7.1.1.6.3 Element PacketCaptureFile
	4.7.1.1.6.4 Element EnableCategory
	4.7.1.1.6.5 Element Verbosity
	4.7.1.1.6.6 Element OutputFile

	4.7.1.1.7 Element Internal
	4.7.1.1.7.1 Element ScheduleTimeRounding
	4.7.1.1.7.2 Element ResponsivenessTimeout
	4.7.1.1.7.3 Element PrimaryReorderMaxSamples
	4.7.1.1.7.4 Element RetransmitMerging
	4.7.1.1.7.5 Element SecondaryReorderMaxSamples
	4.7.1.1.7.6 Element DDSI2DirectMaxThreads
	4.7.1.1.7.7 Element RetransmitMergingPeriod
	4.7.1.1.7.8 Element DefragUnreliableMaxSamples
	4.7.1.1.7.9 Element SquashParticipants
	4.7.1.1.7.10 Element DefragReliableMaxSamples
	4.7.1.1.7.11 Element BuiltinEndpointSet
	4.7.1.1.7.12 Element AggressiveKeepLast1Whc
	4.7.1.1.7.13 Element ConservativeBuiltinReaderStartup
	4.7.1.1.7.14 Element MaxQueuedRexmitBytes
	4.7.1.1.7.15 Element MeasureHbToAckLatency
	4.7.1.1.7.16 Element LegacyFragmentation
	4.7.1.1.7.17 Element MaxQueuedRexmitMessages
	4.7.1.1.7.18 Element SuppressSpdpMulticast
	4.7.1.1.7.19 Element SpdpResponseMaxDelay
	4.7.1.1.7.20 Element WriterLingerDuration
	4.7.1.1.7.21 Element UnicastResponseToSpdpMessages
	4.7.1.1.7.22 Element MinimumSocketReceiveBufferSize
	4.7.1.1.7.23 Element SynchronousDeliveryPriorityThreshold
	4.7.1.1.7.24 Element SynchronousDeliveryLatencyBound
	4.7.1.1.7.25 Element MaxMessageSize
	4.7.1.1.7.26 Element NackDelay
	4.7.1.1.7.27 Element MaxParticipants
	4.7.1.1.7.28 Element FragmentSize
	4.7.1.1.7.29 Element PreEmptiveAckDelay
	4.7.1.1.7.30 Element AccelerateRexmitBlockSize
	4.7.1.1.7.31 Element DeliveryQueueMaxSamples
	4.7.1.1.7.32 Element MaxSampleSize
	4.7.1.1.7.33 Element Test
	4.7.1.1.7.33.1 Element XmitLossiness

	4.7.1.1.7.34 Element Watermarks
	4.7.1.1.7.34.1 Element WhcLow
	4.7.1.1.7.34.2 Element WhcHigh

	4.7.1.1.8 Element Watchdog
	4.7.1.1.8.1 Element Class
	4.7.1.1.8.2 Element Priority

	4.7.1.1.9 Element General
	4.7.1.1.9.1 Element ExternalNetworkMask
	4.7.1.1.9.2 Element AllowMulticast
	4.7.1.1.9.3 Element MulticastTimeToLive
	4.7.1.1.9.4 Element DontRoute
	4.7.1.1.9.5 Element UseIPv6
	4.7.1.1.9.6 Element EnableMulticastLoopback
	4.7.1.1.9.7 Element CoexistWithNativeNetworking
	4.7.1.1.9.8 Element StartupModeDuration
	4.7.1.1.9.9 Element StartupModeCoversTransient
	4.7.1.1.9.10 Element NetworkInterfaceAddress
	4.7.1.1.9.11 Element MulticastRecvNetworkInterfaceAddresses
	4.7.1.1.9.12 Element ExternalNetworkAddress

	4.7.1.1.10 Element TCP
	4.7.1.1.10.1 Attribute Enable
	4.7.1.1.10.2 Attribute Locators
	4.7.1.1.10.3 Attribute NoDelay
	4.7.1.1.10.4 Attribute Port

	4.7.1.1.11 Element ThreadPool
	4.7.1.1.11.1 Attribute Enable
	4.7.1.1.11.2 Attribute ThreadMax
	4.7.1.1.11.3 Attribute Threads

	4.7.2 The DDSI2 Enhanced Networking Service
	4.7.2.1 Element DDSI2EService
	4.7.2.1.1 Attribute name
	4.7.2.1.2 Element Channels
	4.7.2.1.2.1 Element Channel
	4.7.2.1.2.1.1 Attribute name
	4.7.2.1.2.1.2 Attribute transportPriority
	4.7.2.1.2.1.3 Element DiffServField
	4.7.2.1.2.1.4 Element QueueSize
	4.7.2.1.2.1.5 Element DataBandwidthLimit
	4.7.2.1.2.1.6 Element AuxiliaryBandwidthLimit

	4.7.2.1.3 Element Security
	4.7.2.1.3.1 Element SecurityProfile
	4.7.2.1.3.1.1 Attribute name
	4.7.2.1.3.1.2 Attribute cipher
	4.7.2.1.3.1.3 Attribute cipherKey

	4.7.2.1.4 Element Partitioning
	4.7.2.1.4.1 Element NetworkPartitions
	4.7.2.1.4.1.1 Element NetworkPartition
	4.7.2.1.4.1.1.1 Attribute SecurityProfile
	4.7.2.1.4.1.1.2 Attribute name
	4.7.2.1.4.1.1.3 Attribute address
	4.7.2.1.4.1.1.4 Attribute connected

	4.7.2.1.4.2 Element IgnoredPartitions
	4.7.2.1.4.2.1 Element IgnoredPartition
	4.7.2.1.4.2.1.1 Attribute DCPSPartitionTopic

	4.7.2.1.4.3 Element PartitionMappings
	4.7.2.1.4.3.1 Element PartitionMapping
	4.7.2.1.4.3.1.1 Attribute NetworkPartition
	4.7.2.1.4.3.1.2 Attribute DCPSPartitionTopic

	4.7.2.1.5 Element Internal
	4.7.2.1.5.1 Element AuxiliaryBandwidthLimit

	4.8 Record and Replay (RnR) Service
	4.8.1 Attribute name
	4.8.2 Element Watchdog
	4.8.2.1 Element Scheduling
	4.8.2.1.1 Element Priority
	4.8.2.1.1.1 Attribute priority_kind
	4.8.2.1.1.2 Attribute Class

	4.8.3 Element Storage
	4.8.3.1 Attribute name
	4.8.3.2 Element rr_storageAttrXML
	4.8.3.2.1 Element filename

	4.8.3.3 Element rr_storageAttrCDR
	4.8.3.3.1 Element filename

	4.8.3.4 Element Statistics
	4.8.3.4.1 Attribute enabled
	4.8.3.4.2 Attribute publish_interval
	4.8.3.4.3 Attribute reset

	4.8.4 Element Tracing
	4.8.4.1 Attribute OutputFile
	4.8.4.2 Attribute AppendToFile
	4.8.4.3 Attribute Verbosity
	4.8.4.4 Attribute EnableCategory

	4.9 Example Reference Systems
	4.9.1 Zero Configuration System
	4.9.2 Single Node System
	4.9.3 Medium Size Static (Near) Real-time System
	4.9.3.1 High Volumes
	4.9.3.2 Low Latencies
	4.9.3.3 Responsiveness
	4.9.3.4 Topology Discovery

