OpenSplice RMI over DDS

Version 6.x

Getting Started Guide

v PRISMTECH

OpenSplice RMI over DDS

GETTING STARTED GUIDE

& PRISMTECH

Part Number: OS-RMIGSG Doc Issue 09, 30 Nov 12

ii

PRISMTECH
Getting Started Guide 4 Pris

CONTENTS

Table of Contents

2

Getting Started Guide A PRISMTECH

Table of Contents

Table of Contents

Introduction

Featuresc.oiiiiiiieinneeeeeenonnaeenenns
Benefits.cciiiiii ittt ittt ittt it

OpenSplice RMI over DDS

Introduction.cciiiiiiiiiiiiiiienennn
Keycomponentscciiiiiiiinnnennnes
Binding Languagescocvviiennnnnn.

Building an RMI Application

Introduction.coiiiiiiiiiiiiiiiin,
Services descriptionci il
QoS policies description........................
RMI compilation............cooiiiiiiiiiiennn.
Application implementation
Runtime starting and stopping.
Server programming model.....................
Client programming model
Synchronous invocationmode
Asynchronous invocationmode
MultiThreaded Client

Language mapping for OpenSplice RMI

Introduction.coiiiiiiiiiiiiiiiiiien.,
Mapping for interfaces..............covviinnn.
Mapping for operationscc0iieiiiiaann
Mapping for basictypes........coviiiiiiiinna,

RMI Interface to DDS topics mapping rules

Introduction.ccivtiiiiieeeenennnnnnnns

RMI Runtime Configuration Options

Introduction.ciiiiiiiiiiiiiiienennn
RMIClientThreadingModel option...............
RMIServiceDiscoveryTimeout option

QoS policies XML schema

& PRISMTECH

Getting Started Guide

Table of Contents

4

Getting Started Guide A PRISMTECH

Preface

Preface

About the Getting Started Guide

The OpenSplice RMI over DDS Getting Started Guide is intended to explain the
steps required to take advantage of the client/server interaction paradigm provided
by OpenSplice RMI layered over the publish/subscribe paradigm of OpenSplice
DDS.

Intended Audience

This OpenSplice RMI over DDS Getting Started Guide is for developers using
remote invocations in DDS applications.

Organisation
The first two chapters give a general introduction to RMI over DDS.

Chapter 3, Building an RMI Application, describes the steps involved in building
applications using RMI over DDS.

Chapter 4, Language mapping for OpenSplice RMI, gives the C++ and Java
mapping of the IDL types that can be declared in the RMI services description file.

Chapter 5, RMI Interface to DDS topics mapping rules, shows how IDL declarations
of RMI interfaces are mapped into IDL declarations of the implied DDS topics.

Chapter 6, RMI Runtime Configuration Options, describes the command-line
options available when starting the RMI runtime.

Appendix A, QoS policies XML schema, contains the XML schema for reference.

Conventions

The conventions listed below are used to guide and assist the reader in
understanding this Getting Started Guide.

& Item of special significance or where caution needs to be taken.
i Item contains helpful hint or special information.
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix-based systems (e.g. Solaris) only.
C C language-specific.
C++ Cttlanguage-specific.
C# C# language-specific.

Java Java language-specific.

5

PRISMTECH
4 Pris Getting Started Guide

Preface

Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Cross-references such as ‘see Contacts
on page 7’ act as hypertext links: click on the reference to jump to the item.

[}

% Commands or input which the user enters on the
command line of their computer terminal

Courier fonts indicate programming code, commands, file names, and values
stored in variables and fields.

Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set id field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, “%);

Italics and Italic Bold are used to indicate new terms, or emphasise an item.

Sans-serif and Sans-serif Bold are used to indicate components of a Graphical
User Interface (GUI) or an Integrated Development Environment (IDE), such as a
Properties tab, and sequences of actions, such as choosing File > Save from a
menu.

The names of keyboard keys are shown in SANS-SERIF SMALL CAPS, e.g. RETURN.
(Combinations of keys to be pressed simultaneously have their names joined with a
‘plus’ sign: CTRL+C and CTRL+ALT+DELETE.) Names of navigation keys and keys on
the numeric pad are spelled out (e.g. LEFT, DOWN, PLUS, MINUS).

Angle brackets < > enclosing code, command arguments, and similar types of text
strings, are used to indicate ‘placeholders’ to be replaced by user-supplied values.

Step 1: One of several steps required to complete a task.

6

PRISMTECH
Getting Started Guide 4 Pris

Preface

Contacts

PrismTech can be reached at the following contact points for information and
technical support.

USA Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited
400 TradeCenter PrismTech House
Suite 5900 5th Avenue Business Park
Woburn, MA Gateshead
01801 NE11 ONG
USA UK
Tel: +1 781 569 5819 Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com
& PRISMTECH 7

Getting Started Guide

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

Preface

8

PRISMTECH
Getting Started Guide 4 Pris

USING RMI oVER DDS

2

Using RMI over DDS & PRISMTECH

1 Introduction

1.1 Features

CHAPTER

Introduction

1.1 Features

&4 PRISMTECH

OpenSplice RMI provides an implementation of the general concept of invoking a
remote method over DDS. It enhances OpenSplice DDS with a service-oriented
interaction pattern that can be used with combination with the native data-centric
pattern. OpenSplice RMI is a service invocation framework on top of DDS DCPS
that uses DDS mechanisms to export, find and invoke services. It maps all the
application-exchanged requests/replies into DDS data exchanges, and gives the
ability to configure the associated QoS policies according to the application needs.
Finally, OpenSplice RMI enables the definition of a distributed services space over
a DDS data space with all the known DDS benefits, such as discovery, fault
tolerance, performance and real-time features.

Request

Topic Request :
Topic

’

i o o Server2
data space

Figure 1 OpenSplice RMI Communication Scheme

OpenSplice RMI targets service-oriented applications needing a request/reply
communication scheme while they can need to have a very fine control over the data
and the underlying network quality of service. Typically, OpenSplice RMI can be
used in systems to issue commands. Commands are a kind of stimulus that express

3
Using RMI over DDS

1 Introduction 1.2 Benefits

the ability of the system to do something. As commands have the ‘do-something’
connotation, it is often useful to be informed synchronously that the command has
been executed. Thanks to the various DDS QoSs, applications can associate
expiration time, prioritities, persistency and so on to those commands.

Benefits

As a complementary paradigm to data centricity, OpenSplice RMI provides these
benefits:

* A more productive and higher abstraction level than can be achieved manually
through topic exchanges and applications synchronization.

* A unique middleware technology for mixing Global Services and Data Spaces
with an easy and dynamic services registration, data declaration, and the same
discovery mechanisms.

* Enables data-centric applications to use RMI without the burden of an additional
middleware technology (e.g. CORBA).

» Strong services location transparency. Thanks to the connectionless nature of
DDS, service identities do not need to include any network-related information. In
OpenSplice RMI, a service is identified by a simple name. Services’ identities are
exported naturally via a DDS publication on specific topics. Services can even
move from one location to another without any impact on client applications.

» Simple APIL.

* Easy deployment process.

4

PRISMTECH
Using RMI over DDS L Pris

2 OpenSplice RMI over DDS 2.1 Introduction

CHAPTER

2 OpenSplice RMI over DDS

2.1 Introduction

&4 PRISMTECH

As in traditional service-oriented applications, communication from client to server
is performed through a well-defined service model. The RMI module enables a user
to build a service model with remote method invocation capabilities and completely
hides the DDS DCPS API. Of course, using RMI does not prevent the application
from using the DDS API as shown by the following figure:

APPLICATION

RMI
DDS

OS

Figure 2 RMI Relationship to DDS

A service model is defined by one or more object-oriented interfaces. A DDS RMI
interface is an IDL interface having a name and a set of operations. Each operation
has a fixed set of typed parameters. The RMI module provides:

* A service invocation framework that maps the different services operations onto a
set of DDS topics that hold the operation's invocation requests and replies. A set
of mapping rules have been defined for this purpose. At runtime, this framework
sets up the underlying DDS environment and handles the remote interface
invocations using the basic DDS read/write operations.

5
Using RMI over DDS

2 OpenSplice RMI over DDS 2.2 Key components

* A simple and intuitive programming model for both the server application side
implementing the interface, and the client application side invoking that interface.
The server programming model is as simple as implementing an interface, and the
client programming model is as simple as calling a local interface.

* A powerful feature to enable tuning of the invocation request and reply QoS by
setting their corresponding DDS QoS policies. This feature enables developers to
improve the invocations quality with real-time and high-performance features.
For instance, priorities and validity durations (lifespan) could be set on the
different operation requests/replies.

* Synchronous, asynchronous and oneway invocation modes. The synchronous
mode is the invocation mode that blocks the client thread until the reply is sent
back to him by the server. The asynchronous mode is similar to the CORBA
Asynchronous Messaging Interface (AMI) callback model. It is a non-blocking
mode where the client does not wait for the reply from the server, but rather
provides a callback object that will be invoked by the middleware to deliver the
request return values when they are received. Finally, the oneway mode is a
fire-and-forget invocation mode where the client does not care about the success
or failure of the invocation. A oneway method cannot return values and no reply
message will ever return to the client once the request is sent to the server.

* C++ and Java implementation.

Key components
The OpenSplice DDS RMI module includes the following components:

e RMI Pre-processor (rmipp) — generates the interface-type-specific
requests/replies topics and invocation handling classes.

* Core library — provides the runtime setup operations and a generic invocation
framework.

Binding Languages
The OpenSplice DDS RMI module is available for both Java and C++ languages.

6

PRISMTECH
Using RMI over DDS L Pris

3 Building an RMI Application 3.1 Introduction

CHAPTER

Building an RMI Application

3.1 Introduction

The process of building an OpenSplice DDS RMI application is shown in Figure 3
below. The different steps are described in the following subsections.

Interfaces
definition |
(*.idl)

Interfaces
definition
DDS
Topics
Definition

(*.idl)

Application logic
implementation

idlpp
pre-processor

rmipp
pre-processor

Client
RMI DDS
generated generated Sildroseecrgzre
source code 'source code|
- > -4 - - g
Service -~ RMI DDS Application
description Compilation Compilation Implementation

Figure 3 Steps Building Applications with RMI

3.2 Services description

&4 PRISMTECH

The first step in building an RMI application is the definition of its provided
services in terms of interfaces. The application interfaces should be declared using
the OMG IDL language. The operations parameters can be either of basic (short,
long, ...) or complex (struct, sequence, string, ...) types. However, the following
restrictions should be respected:

* the Any and the valuetype IDL types are not supported because they are not
supported by the underlying DDS DCPS layer. Union type is also not supported.

» Exceptions are not supported at this time.

* Each interface must extend DDS_RMI: :Services base interface to indicate that
it is invocable over DDS. This interface is defined in the file dds rmi.idl,
which must be included.

» Each interface must be declared ‘local’.

7
Using RMI over DDS

3 Building an RMI Application 3.3 QoS policies description

* Oneway operations are supported. The semantics of oneway operations is the
same as for the OMG CORBA interfaces. A oneway operation must not contain
any output parameter and must return a void type.

The following IDL snippet shows an example of a service data description:

#include "dds rmi.idl"
module HelloWorld
{
// interface definition
local interface HelloService : ::DDS RMI::Services
{

string greet () ;
}i
}i

QoS policies description

The OpenSplice DDS RMI module provides the ability to tune the quality of service
of the services invocations (requests and/or replies), if needed, by setting the
underlying DDS QoS policies. By default, the DDS RMI module uses the default
values of the DDS QoS policies except for the reliability QoS policy which is set to
RELTABLE.

If needed, the application designer can define the QoS policies to be set on the
invocations in an XML file. This file must respect the XML schema given in
Appendix A, QoS policies XML schema, starting on page 29.

Note that setting the DDS QoS policies requires a good knowledge of the rules for
mapping the specified interfaces onto the DDS topics description (please refer to
Chapter 5, RMI Interface to DDS topics mapping rules, on page 25).

The following XML snippet shows an example:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<dcps xmlns="http://www.omg.org/dds/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/dds/DCPS.xsd">

<domain id="">
<topic name="greet req"

idltype="::HelloWorld: :HelloService: :greet request" idlfile="">

<topic_gos>
<destinationOrderQosPolicy>
<destinationOrderKind>
BY SOURCE TIMESTAMP DESTINATIONORDER QOS
</destinationOrderKind>
</destinationOrderQosPolicy>

<durabilityQosPolicy>
<durabilityKind>

8

PRISMTECH
Using RMI over DDS L Pris

3 Building an RMI Application 3.4 RMI compilation

PERSISTENT DURABILITY QOS
</durabilityKind>
</durabilityQosPolicy>

<latencyBudgetQosPolicy>
<duration>
<nanosec>10000000</nanosec>
<sec>0</sec>
</duration>
</latencyBudgetQosPolicy>

<reliabilityQosPolicy>
<duration>
<nanosec>100000000</nanosec>
<sec>0</sec>
</duration>
<reliabilityKind>
RELIABLE RELIABILITY QOS
</reliabilityKind> -
</reliabilityQosPolicy>
</topic gos>

</topic>

</domain>
</dcps>

This example specifies the QoS policies to be applied on the topic invocation
request of the greet operation of the interface HelloWorld: :HelloService.
Note that the invocation request topic is named greet req and its IDL type is
HelloWorld: :HelloService::greet request.

RMI compilation

&4 PRISMTECH

Once the application has defined its services and (optionally) its QoS settings, these
definitions are compiled to generate type-specific code for the application services
invocation.
The RMI compilation is done using the rmipp pre-processor applied on the
interfaces definition file and the QoS file if it exists. The rmipp usage is:

rmipp [-1 (Java | c++)] [-I <path>] [-d <directory>] [-topics

<gos_file>] [-P dll macro name[,<header-file>]] <interfaces file>

The parameters are:

-1 (java | cpp) Define the target language. The C++ language is the
default.

-I <path> Define the include path directives.

-d <directory> Define the location to place the generated files.

9
Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

-topics <gos file> Define the XML file including the QoS policies
settings.

-P dl1_macro_namel, Only applicable to C and C++. Sets export macro

<header-file>] that will be prefixed to all functions in the generated
code. This allows creating DLL’s from generated
code. Optionally a header file can be given that will
be included in each generated file.

<interfaces file> The IDL file including the interfaces definition.

The rmipp compilation will generate a set of Java or C++ source files as well as an
IDL file including the mapping of the provided interfaces onto the DDS topics. The
generated IDL file name is the interfaces file name with ° topics’ concatenated.

Rmipp follows the mapping rules described in Chapter 4, Language mapping for
OpenSplice RMI, on page 21.

Example usage:
rmipp -d generated HelloService.idl
The generated directory will include:

HelloService topics.idl

HelloService Interface.h

HelloService Interface.cpp

HelloService InterfaceProxy.h

HelloService InterfaceProxy.cpp
In addition, the rmipp compiler performs a DDS compilation to generate the
DDS/DCPS code that is required to support the requests/replies transport over DDS.

Application implementation

As mentioned before, the target applications have a client/server design. A typical
application includes a server part that implements the provided interfaces, and a
client part that invokes these interfaces. This section describes the programming
model of both parts.

Runtime starting and stopping

Any DDS RMI application process must initialize the RMI runtime prior to any
other operation, regardless of whether it is a client and/or a server process. The
runtime initialization sets up the underlying DDS infrastructure and configures it to
make the services invocable and the clients capable of invoking the services. It is
also important to stop the runtime when the application is no longer using RMI.

The following code snippets show the runtime initialisation and stopping procedure
in C++ and Java.

10

PRISMTECH
Using RMI over DDS L Pris

3 Building an RMI Application 3.5 Application implementation

&4 PRISMTECH

RMI runtime starting and stopping in C++

1 #include “ddsrmi.hpp”

2

3 using namespace org::opensplice::DDS RMI;

4

5 int main (int argc, char * argv [])

6 {

7 CRuntime ref runtime = CRuntime::getDefaultRuntime () ;

8 if (runtime.get () == NULL)

9 {

10 std::cout << "Failed to get the Runtime " << std::endl;
11 exit (1) ;

12 }

13

14 //starting the runtime

15 bool result = runtime->start (argc, argv);

16 if (result !=true)

17 {

18 std::cout << "Failed to start the Runtime " << std::endl;
19 exit (1) ;

20 }

21

22

23 //stopping the runtime

24 result = runtime->stop () ;

25 if (result !=true)

26 {

27 std::cout << "Failed to stop the Runtime " << std::endl;
28 exit (1) ;

29 }

30 }

Comments below refer to line numbers in the sample code above:

(1) — Include the OpenSplice RMI library header file.
Any OpenSplice RMI application should include this file.

(3) — Declare the usage of the OpenSplice RMI library namespace.

(7-12) — Get the default DDS runtime.
This selects the default DDS domain as the data space where all subsequent
RMI requests and replies will be exchanged.

(15-20) — Initialize the created runtime.

This creates all the needed DDS entities. A set of configuration options can be
passed to the start operation via argc and argv parameters. This latter is a
string array including possible option names and values, and argc is the length
of this array. Note that these parameters are typically the same parameters that
were passed to the main program so that the RMI options can be specified on
the command line, each following the format ‘~-option=value’. All of the
supported options are described in Chapter 6, RMI Runtime Configuration
Options, on page 27.

11
Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

(24-28) — Stop the created runtime.
This removes all the created DDS entities and releases the RMI-allocated
resources. It is strongly recommended to stop the runtime when it no longer
needed.

The Java code below works in a similar way.

RMI runtime starting and stopping in Java
import org.opensplice.DDS RMI;

static void main (String[] args) {

CRuntime runtime = CRuntime.getDefaultRuntime () ;
if(null == runtime)
{
System.out.println() ;
System.exit (1) ;
}

//starting the runtime

boolean result = runtime.start (args);

if (!result)

{
System.out.println ("Failed to start the Runtime")
System.exit (1) ;

//stopping the runtime

result = runtime.stop() ;

if (!result)

{
System.out.println ("Failed to stop the Runtime") ;
System.exit (1) ;

}

Server programming model

At the server side of the application, each provided interface should be
implemented, then instantiated and finally registered to be invocable via OpenSplice
DDS.

To define an implementation, the application developer must write an
implementation class including public methods corresponding to the operations of
the related IDL interface. The rmipp compilation generates for each interface a
skeleton class, named : :DDS _RMI::HelloWorld::HelloServicelnterface,
that must be extended by the application-supplied implementation class. The
language mapping rules of the RMI IDL interfaces are given in Chapter 4,
Language mapping for OpenSplice RMI, on page 21.

12

PRISMTECH
Using RMI over DDS L Pris

3 Building an RMI Application 3.5 Application implementation

&4 PRISMTECH

To make an interface invocable over DDS, it must be registered within the RMI
framework, then activated. The registration process requires the following
information:

* the implementation class object
* the server name, as well as a unique id identifying that interface inside the server.

The services activation makes the RMI runtime wait for incoming requests for all
the registered services.

The following code snippets show the server programming model in Java and C++.

C++ RMI interface implementation

class HelloService impl :
public virtual DDS RMI::HelloWorld::HelloServicelInterface
{
public:
HelloService impl ();
~ HelloService impl();

virtual DDS::String greet ();

Java RMI interface implementation

public class HelloService impl
DDS RMI.HelloWorld.myInterfaceInterface {

public String greet ()
{

}

// operation implementation

C++ RMI server

#include “ddsrmi.hpp”
#include “HelloService Interface.hpp”

using namespace org::opensplice::DDS RMI;

int main (int argc, char * argv [])

{

OO Jo Ul WwWN

// Runtime starting

12 // implementation class instanciation
13 shared ptr<HelloService impl> impl (new HelloService impl());

15 //interface registration
16 bool res = DDS Service::register interface<

::DDS RMI::HelloWorld::HelloServiceInterface, HelloService impl> (
17 impl, //implementation class
13
Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

14

18 “HelloServer”, // server name
19 1 // unique server id

20)i

21

22

23 if (!res)

24 {

25 std::cout << "Failed to register the
HelloWorld::HelloService interface")

26 System.exit (1) ;

27 }

28 //services activation

29 runtime->run ()

30 // Runtime stopping

31

32 }

Comments below refer to line numbers in the sample code above:

(1-2) — Include the OpenSplice RMI library header file as well as the generated
interface skeleton header file.

(3) — Declare the usage of the OpenSplice RMI library namespace.
(10) — Start the DDS runtime.

(13) — Instantiate the implementation class of the HelloService interface and
assign it to a smart pointer. The OpenSplice RMI library provides an
implementation of smart pointers via the shared ptr template class.

(16-27) — Register the HelloService interface in the default DDS domain.
The register interface function is a template function requiring the
interface skeleton class and the interface implementation class as template
parameters.

(28) — Activates all the registered services including the HelloServer service.
This is a blocking call that makes the server runtime wait for incoming requests.
To shut down the server runtime the shutdown () operation must be called.

(31) — Stop the DDS runtime.

The Java code below works in a similar way.

Java RMI server

static void main (String[] args) {
// Runtime starting
// implementation class instanciation
HelloService impl impl = new HelloService impl () ;

// interface registration
boolean res =

org.opensplice.DDS RMI.DDS Service.register interface (

& PRISMTECH

Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

impl, // implementation class

“HelloServer”, // server name

1, // unique server id

DDS RMI.HelloWorld.HelloServicelInterface.class //Interface
java Class

)i

if (!res)
{
System.out.println ("Failed to register the
HelloWorld: :HelloService interface") ;
System.exit (1) ;
}

runtime.run () ;
// Runtime stopping

}

Client programming model

As mentioned before, OpenSplice RMI supports synchronous, asynchronous and
oneway invocation modes. The following subsections present the synchronous and
asynchronous programming model. The oneway programming model is similar to
the synchronous one but, of course, with a different behaviour.

Synchronous invocation mode

&4 PRISMTECH

The client part of the RMI application is as simple as calling a local class. Note that
these calls block until the server-side responds or an internal timeout expires.
Typically, in case of failure, the call will block until the timeout expiration. This
timeout value is set by default to 10 minutes, but it may be configured via the
interface proxy object. This object is a generated object, named
::DDS RMI::HelloWorld::HelloServiceInterfaceProxy, thatis the local
representative of the RMI interface. This object is mainly used to call the RMI
services, as shown in the following client code examples.

C++ RMI client
1 #include “ddsrmi.hpp”
2 #include “HelloService InterfaceProxy.hpp”
3
4 using namespace org::opensplice::DDS RMI;
5
6 int main (int argc, char * argv [])
T A
8
9 // Runtime starting
10
11
12 // Getting the interface proxy
13 shared ptr<::DDS RMI::HelloWorld::HelloServiceInterfaceProxy>
pProxy ;
14 bool ret = DDS_ Service::getServerProxy<
::DDS _RMI::HelloWorld::HelloServiceInterfaceProxy>
15 (

15
Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

16 “HelloServer”, //server name
17 1, //unique proxy instance id
18 proxy // proxy reference

19);

20

21 // Calling the services

22 proxy->greet () ;

23

24 // Runtime stopping

25 .

26

27 '}

Comments below refer to line numbers in the sample code above:

(1-2) — Include the RMI library header file as well as the generated interface proxy
header file.

(3) — Declare the usage of the OpenSplice RMI library namespace.
(10) — Start the DDS runtime.
(13) — Declare a smart pointer of the HelloService interface proxy type.

(13-19) — Get the HelloServer service proxy.

The getServerProxy function is a template function requiring the proxy class
type as a template parameter. This function accepts the service name, a proxy
instance id and the smart pointer to the proxy object as parameters. In case of
success, the smart pointer is set to the created proxy object. The proxy instance
id is a unique identifier that refers to the created proxy. It is important to ensure
the uniqueness of the identifiers of all the proxies of the same service. If the
client application intends to use the same proxy in different threads, the
MultiThreaded mode must be set (see section 3.5.3.3 on page 19).

If the requested service is not found., the getServerProxy operation will raise
an org: :opensplice::DDS RMI::SERVICE NOT FOUND exception.

(22) — Invoke the greet operation synchronously using the created proxy.
(25) — Stop the runtime.

The Java code below works in a similar way.

Java RMI client
import org.opensplice.DDS RMI.*;

static void main (String[] args) {

// Runtime starting

// Getting the interface proxy

try {

DDS RMI.HelloWorld.HelloServiceInterfaceProxy proxy =
DDS Service.getServerProxy (

16

PRISMTECH
Using RMI over DDS L Pris

3 Building an RMI Application 3.5 Application implementation

“HelloServer”, //server name

1, //unique proxy instance id

DDS RMI.HelloWorld.HelloServicelInterfaceProxy.class //
proxy java Class

’

// Calling the services
proxy.greet () ;

} catch (SERVICE NOT FOUND e) {
// error

}
// Runtime stopping

Asynchronous invocation mode

&4 PRISMTECH

To invoke asynchronously a given non-oneway operation, such as the greet
operation in the examples shown here, the client application must:

* Implement a specific reply handler class to handle the operation out/inout/return
parameters if any. This handler must extend a base reply handler class that is
generated for each operation and implement the greetReply callback function
or method whose parameters are the out/inout/return parameters of the related
IDL operation.

* Use the generated asynchronous function or method that maps to the IDL
operation whose name is the concatenation of ‘async ’ and the IDL operation
name. This operation is a void operation that accepts only the in and inout IDL
parameters, in addition to the reference of the implemented reply handler.

Note that the reply handler class is not re-entrant in the current implementation. It
cannot handle concurrent replies. It means that if two successive asynchronous calls
are made with the same reply handler instance, this latter will reject the second reply
if it has not finished dispatching the first one. In this case the asynchronous call will
raise a BAD_ PARAM exception.

IMPORTANT: It is strongly recommended not to mix synchronous and
asynchronous calls of the same operation without proper synchronization. The
application should ensure that the asynchronous call has received its reply before
requesting a synchronous one.

C++ RMI Client with asynchronous invocation

#include “ddsrmi.hpp”
#include “HelloService InterfaceProxy.hpp”

using namespace org::opensplice::DDS RMI;

/**

* Reply Handler of the 'async greet' operation

o0 W

17
Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

8 *

9 =y

10 class MyGreetReplyHandler :

11 public virtual HelloWorld HelloService greet Reply Handler
12 {

13 void greet Reply(DDS::String ret)

14 {

15 std::cout << "Reply received: " << ret << std::endl;
16 }

17 }

18

19 int main (int argc, char * argv [])

20 |

21

22 // Runtime starting

23

24

25 // Getting the interface proxy

26 shared ptr<::DDS RMI::HelloWorld::HelloServicelnterfaceProxy>
proxy ;

27 bool ret = DDS_Service::getServerProxy<

::DDS RMI::HelloWorld::HelloServiceInterfaceProxy>
28

29 “HelloServer”, //server name

30 1, // proxy instance id

31 proxy // proxy reference

32) 7

33

34 // instantiating a reply handler

35 MyGreetReplyHandler handler;

36

37 // Calling the services asynchronously

38 proxy->async greet (&handler) ;

39 coo

40

41 // Runtime stopping

42 .

43

44 1}

Comments below refer to line numbers in the sample code above:

(10-16) — Provide the implementation class of the greet operation reply handler.
(21) — Start the DDS runtime.

(24-31) — Get the HelloServer service proxy as for the synchronous mode.
(34) — Instantiate the greet reply handler class.
(37) — Invoke the async _greet () operation by providing the reply handler.

18
Using RMI over DDS

This call is a non-blocking call. The application steps immediately to the next
instruction. The invocation reply will be delivered to the application by
invoking the greet Reply operation of the reply handler. Note that this
operation will be invoked in a middleware-provided thread.

& PRISMTECH

3 Building an RMI Application 3.5 Application implementation

(41) — Stop the runtime.
Note that some synchronization may be needed to not exit before the
async_greet reply is delivered to the application.

The Java code below works in a similar way.

Java RMI Client with asynchronous invocation
import org.opensplice.DDS RMI.*;

/**

* Reply Handler of the 'async greet' operation
*

*/
class MyGreetReplyHandler extends
DDS RMI.HelloWorld.HelloServiceInterfaceProxy.greet Reply Handler ({
public void greet Reply(String ret) ({
System.out.println("async greet returns: " + ret);

}
I &

static void main (String[] args) {

// Runtime starting

try {
// Getting the interface proxy
DDS RMI.HelloWorld.HelloServiceInterfaceProxy proxy =
DDS Service.getServerProxy (
“HelloServer”, //server name
1, //server instance id
DDS RMI.HelloWorld.HelloServicelInterfaceProxy.class //

proxy java Class

)i

// Calling the services asynchronously
proxy.asynch greet();
} catch (SERVICE NOT FOUND e) ({
System.out.println ("'HelloServer' service not found !");

}

// Runtime stopping

MultiThreaded Client

The default threading model of a client application is single threaded. It means that,
by default, a service proxy may not be used by multiple concurrent threads to
perform service invocations. To enable or disable the multithreaded mode for
clients, a configuration option must be specified in the command line as follows:

--RMIClientThreadingModel=[ST|MT]

19

&4 PRISMTECH Using RMI over DDS

3 Building an RMI Application 3.5 Application implementation

The ST and MT option values set respectively the Single Threaded and MultiThreaded
mode. Note that this option must be set both at the client and the server side even if
it sets the threading model of only the client.

20

PRISMTECH
Using RMI over DDS L Pris

4 Language mapping for OpenSplice RMI 4.1 Introduction

CHAPTER

Language mapping for OpenSplice
RMIT

4.1 Introduction

&4 PRISMTECH

Rmipp compilation follows a set of mapping rules to generate language-specific
source code. Most of these rules come from the standard OMG IDL-to-C++ and
IDL-to-Java mapping specifications but with some specific differences. This chapter
focuses on specific parts of this mapping. For more information, please refer to the
related OMG specifications.

The following figure shows the language mapping of the HelloService IDL
interface previously defined.

<IDL interface>
HelloService

string greet()

rmipp
cgmpilatign

i <class> <ahstract>
HelloServicelnterfaceProxy HelloServicelnterface
greet () : DDS::String greet () : DDS::String
asynch_greet (thandler) : void

T I'Y

<abstract>

greet Reply Handler

greet_Reply(DDS::String ret)

I .

| user-defined 1 | _us;—de?ned_ _ 1
L handler implementation | LlnErfeﬁe Inlple_men_tatlo_n |

Figure 4 IDL Interface Mapping

21
Using RMI over DDS

4 Language mapping for OpenSplice RMI 4.2 Mapping for interfaces

4.2 Mapping for interfaces

An interface is mapped to two C++ (or Java) classes that contain public definitions
of the operations defined in the interface. The HelloServiceInterface abstract
class is the base class of the HelloService implementation class. The
HelloServiceInterfaceProxy class is the proxy object that represents locally
the remote service. The client application should get a reference to this class to be
able to invoke the remote service.

4.3 Mapping for operations

Each IDL operation, if not oneway, is mapped to two C++ functions (Java methods).
The first one, having the same name as the IDL operation, is used for synchronous
invocations. The second one, having “async_” concatenated to the IDL operation, is
used for asynchronous invocations. A oneway operation maps only to the
synchronous form of the operations.

The operations parameters and return types obey the same parameter passing rules
as for the standard OMG IDL-to-C++ and IDL-to-Java mapping. The asynchronous
functions (methods) will return void and take only the in/inout parameters of the
IDL operation, as well as a callback object used as a reply handler. This handler
class is also generated for each non void operation as an inner abstract class of the
proxy class as depicted in the diagram with the greet Reply Handler class.
This latter should be implemented by the user to handle the asynchronous
invocation reply. Hence, the greet Reply function (method) provides all the
inout/out/return parameters of the corresponding IDL operation.

4.4 Mapping for basic types

22

The table below shows the C++ and Java mapping of the IDL #ypes that can be
declared in the RMI services description file.

IDL sequences are mapped as specified by the DDS standard.

Table 1 Mapping for basic types

IDL type C++ Java

boolean DDS::Boolean boolean
char DDS::Char char

octet DDS::Octet byte

short DDS::Short short

unsigned short DDS::UShort short

long DDS::Long int

unsigned long DDS::ULong int

& PRISMTECH

Using RMI over DDS

4 Language mapping for OpenSplice RMI

&4 PRISMTECH

4.4 Mapping for basic types

Table 1 Mapping for basic types (continued)

IDL type C++ Java
long long DDS::LongLong long
unsigned long long DDS::ULonglLong |long
float DDS::Float float
double DDS::Double double
string DDS::String String

23

Using RMI over DDS

4 Language mapping for OpenSplice RMI 4.4 Mapping for basic types

24

PRISMTECH
Using RMI over DDS L Pris

5 RMI Interface to DDS topics mapping rules 5.1 Introduction

CHAPTER

5 RMI Interface to DDS topics

mapping rules

5.1 Introduction

&4 PRISMTECH

This chapter demonstrates the mapping rules driving the transformation of the IDL

declarations of the RMI interfaces into the IDL declarations of the implied DDS

topics.

e For each <InterfaceName>, a new module is created with the same name and
scope in the module DDS RMI, where all the topics associated with the interface
operations will be made.

* Each <InterfaceName>.<operation name> creates two data structures,
suffixed respectively with request for data structure that handles the request,
and reply for the data structure that handles the reply.

* The <operation name> request data struct will gather all [in] or [inout]
parameters.

* The <operation name> reply data struct will gather the return value and all
[inout] or [out] parameters.

* reg info is used to enable the client service handler to pick the reply it is
waiting for.

module HelloWorld {
local interface HelloService : ::DDS RMI::Services

{
) g

void opl (in string pl, inout short p2, out long p3);

}i

module DDS RMI ({
module HelloWorld {
module HelloService {

25
Using RMI over DDS

5 RMI Interface to DDS topics mapping rules 5.1 Introduction

26

struct opl request ({
DDS RMI::Request Header req info;
string pl;
short p2;
bi
#pragma keylist opl request req info.client id.client impl
req info.client id.client instance

struct opl reply {
DDS _RMI::Request Header req_info;
short p2;
long p3;
i
#pragma keylist opl reply req info.client id.client impl
req_info.client id.client instance

1
}i

& PRISMTECH

Using RMI over DDS

6 RMI Runtime Configuration Options 6.1 Introduction

CHAPTER

6 RMI Runtime Configuration
Options

6./ Introduction

The RMI runtime can be configured by a set of command line options. These
options are passed directly to the runtime start operation as described in section
3.5.1, Runtime starting and stopping, on page 10.

This chapter describes the set of supported options.

6.2 RMIClientThreadingModel option
--RMIClientThreadingModel = [ST | MT]
This option specifies the threading model of a given client. The ‘ST’ and ‘MT’ option
values set respectively the Single-Threaded and Multi-Threaded models.

& Note that this option must be set both at the client and the server side even if it sets
the threading model of only the client.

6.3 RMIServiceDiscoveryTimeout option
--RMIServiceDiscoveryTimeout = <seconds>

This is a client-side option that specifies the maximum duration (in seconds) that a
client application can wait to find services. It influences the execution time of the
DDS Service.getServerProxy operation that is used to find a given service.
The default value is set to 10 seconds. The need to set this value may come from
some specific deployment environements with bad communication conditions.

27
&4 PRISMTECH Using RMI over DDS

6 RMI Runtime Configuration Options 6.3 RMIServiceDiscoveryTimeout option

28

PRISMTECH
Using RMI over DDS L Pris

Appendices

Appendix

QoS policies XML schema

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.omg.org/dds/"
xmlns="http://www.omg.org/dds/"
elementFormDefault="qualified">
<xsd:element name="dcps">
<xsd:complexType>
<xsd:all>
<xsd:element ref="domain" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="domain">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="topic" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="topic">
<xsd:complexType>
<xsd:all>
<xsd:element ref="keylist" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="topic gos" minOccurs="0"
maxOccurs="1"/>
</xsd:all>
<xsd:attribute name="name" type="xsd:string"
use="required"/>
<xsd:attribute name="idltype" type="xsd:string"
use="required"/>
<xsd:attribute name="idlfile" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>

29

& PRISMTECH Getting Started Guide

Appendices

<xsd:element name="keylist">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="keyMember" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="keyMember" type="xsd:string"/>

<xsd:element name="topic gos">
<xsd:complexType>
<xsd:all>
<xsd:element ref="topicDataQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="deadlineQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="durabilityQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="durabilityServiceQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="latencyBudgetQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="livelinessQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="reliabilityQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="destinationOrderQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="historyQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="resourcelLimitsQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="transportPriorityQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="lifespanQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="ownershipQosPolicy" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="timeBasedFilterQosPolicy" minOccurs="0"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="deadlineQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
</xsd:all>

30

Getting Started Guide &4 PRISMTECH

Appendices

</xsd:complexType>
</xsd:element>

<xsd:element name="timeBasedFilterQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="topicDataQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element name="value" type="xsd:base6c4Binary"
minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="duration">
<xsd:complexType>
<xsd:all>
<xsd:element name="sec" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="nanosec" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="durabilityQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="durabilityKind" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="durabilityKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="VOLATILE_DURABILITY_QOS"/>
<xsd:enumeration value="TRANSIENT_LOCAL_DURABILITY_QOS"/>
<xsd:enumeration value:"TRANSIENT_DURABILITY_QOS"/>
<xsd:enumeration value="PERSISTENT DURABILITY QOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

31

& PRISMTECH Getting Started Guide

Appendices

<xsd:element name="durabilityServiceQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="historyKind" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="history depth"
type="xsd:positiveInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="max samples" type="xsd:positiveInteger"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="max instances"
type="xsd:positivelInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="max samples per instance"
type="xsd:positiveInteger" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="historyKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="KEEP LAST HISTORY QOS"/>
<xsd:enumeration value="KEEP ALL HISTORY QOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="latencyBudgetQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="livelinessQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="livelinessKind" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="reliabilityQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="reliabilityKind" minOccurs="1"
maxOccurs="1"/>

32

Getting Started Guide &4 PRISMTECH

Appendices

<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="reliabilityKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="BEST_EFFORT_RELIABILITY_QOS"/>
<xsd:enumeration value="RELIABLE RELIABILITY QOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="destinationOrderQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="destinationOrderKind" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="destinationOrderKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration
value="BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS"/>
<xsd:enumeration
Value="BYisOURCEiTIMESTAMPiDESTINATIONORDERiQOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="livelinessKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTOMATIC_LIVELINESS_QOS"/>
<xsd:enumeration
value="MANUAL_BY_PARTICIPANT_LIVELINESS_QOS"/>
<xsd:enumeration value="MANUAL_BY_TOPIC_LIVELINESS_QOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="historyQosPolicy">
<xsd:complexType>
<xsd:all>

33

& PRISMTECH Getting Started Guide

Appendices

<xsd:element ref="historyKind" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="depth" type="xsd:positivelnteger"
default="1" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="resourcelLimitsQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element name="max samples" type="xsd:positivelnteger"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="max instances"
type="xsd:positiveInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="max samples per instance"
type="xsd:positivelInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="initial samples"
type="xsd:positivelInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="initial instances"
type="xsd:positiveInteger" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="transportPriorityQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element name="value" type="xsd:nonNegativeInteger"
minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="lifespanQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="ownershipQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="ownershipKind" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

34

Getting Started Guide &4 PRISMTECH

Appendices

<xsd:element name="ownershipKind">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="SHARED_OWNERSHIP_QOS"/>
<xsd:enumeration value="EXCLUSIVE OWNERSHIP QOS"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

35

& PRISMTECH Getting Started Guide

Appendices

36

Getting Started Guide &4 PRISMTECH

	OpenSplice RMI over DDS
	Table of Contents
	Preface
	About the Getting Started Guide
	Contacts

	Using RMI over DDS
	1 Introduction
	1.1 Features
	1.2 Benefits

	2 OpenSplice RMI over DDS
	2.1 Introduction
	2.2 Key components
	2.3 Binding Languages

	3 Building an RMI Application
	3.1 Introduction
	3.2 Services description
	3.3 QoS policies description
	3.4 RMI compilation
	3.5 Application implementation
	3.5.1 Runtime starting and stopping
	3.5.2 Server programming model
	3.5.3 Client programming model
	3.5.3.1 Synchronous invocation mode
	3.5.3.2 Asynchronous invocation mode
	3.5.3.3 MultiThreaded Client

	4 Language mapping for OpenSplice RMI
	4.1 Introduction
	4.2 Mapping for interfaces
	4.3 Mapping for operations
	4.4 Mapping for basic types

	5 RMI Interface to DDS topics mapping rules
	5.1 Introduction

	6 RMI Runtime Configuration Options
	6.1 Introduction
	6.2 RMIClientThreadingModel option
	6.3 RMIServiceDiscoveryTimeout option

	A QoS policies XML schema

