
1 ZMP LQR Riccati Equation

Using z(t) as the 2D position of the ZMP, we formulate:

minimize
u(t)

∫ ∞
0

[
‖z(t)− zd(t)‖22 + ‖u(t)‖2R

]
dt,

subject to R = R′ > 0,

zd(t) = zd(tf ), ∀t ≥ tf
ẋ(t) = Ax(t) +Bu(t), z(t) = Cx(t) +Du(t)

A =

[
02×2 I2×2
02×2 02×2

]
, B =

[
02×2
I2×2

]
C =

[
I2×2 02×2

]
, D = −h

g
I2×2

This can be rewritten as a cost on state, in coordinates relative to the final

conditions, x̄ = x−
[
zTd (tf ) 0 0

]T
, z̄d(t) = zd(t)− zd(tf ):

minimize
u(t)

∫ ∞
0

x̄TQ1x̄+ x̄T q2(t) + q3(t) + uTR1y + uT r2(t) + 2x̄TNu

subject to Q1 = diag(1 1 0 0), q2(t) =

[
−2z̄d(t)

02×1

]
, q3(t) = ‖z̄d(t)‖22

R1 = R+

(
h

g

)2

I2×2, r2(t) = 2z̄d(t)
h

g
, N = −h

g

[
I2×2
02×2

]
ẋ(t) = Ax(t) +Bu(t)

A =

[
02×2 I2×2
02×2 02×2

]
, B =

[
02×2
I2×2

]

Note that this implies that x̄(∞) = 0 in order for the cost to be finite.
The resulting cost-to-go is given by

J = x̄TS1(t)x̄+ x̄T s2(t) + s3(t),

with the corresponding Riccati differential equation given by

Ṡ1 = −
(
Q1 − (N + S1B)R−11 (BTS1 +NT ) + S1A+ATS1

)
ṡ2 = −

(
q2(t)− 2(N + S1B)R−1rs(t) +AT s2

)
, rs(t) =

1

2
(r2(t) +BT s2(t))

ṡ3 = −
(
q3(t)− rs(t)TR−1rs(t)

)
Note that S1 has no time-dependent terms, and therefore S1(t) is a constant,
given by the steady-state solution of the algebraic Riccati equation (e.g. from
time-invariant LQR). Similarly, the feedback controller is given by

u(t) = K1(t)x̄+ k2(t),

1



and again the feedback K1(t) is a constant (derived from the infinite horizon
LQR with Q, R, and N set as above).

1.1 Solving for s2(t)

Given this, the affine terms in the Riccati differential equation are given by the
linear differential equations:

ṡ2(t) = A2s2(t) +B2z̄d(t), s2(tf ) = 0

with

A2 = (N + S1B)R−1BT −AT , B2 =

[
2I2×2
02×2

]
+ 2

h

g
(N + S1B)R−1

Assuming z̄d(t) is described by a continuous piecewise polynomial of degree k
with n+ 1 breaks at tj (with t0 = 0 and tn = tf ):

z̄d(t) =

k∑
i=0

cj,i(t− tj)i, for j = 0, ..., n− 1, and ∀t ∈ [tj , tj+1),

this system has a closed-form solution given by:

s2(t) = eA2(t−tj)αj +

k∑
i=0

βj,i(t− tj)i, ∀t ∈ [tj , tj+1),

with αj and βj.i vector parameters to be solved for. Taking

ṡ2(t) =A2e
A2(t−tj)αj +

k∑
i=0

A2βj,i(t− tj)i +

k∑
i=0

B2cj,i(t− tj)i

=A2e
A2(t−tj)αj +

k∑
i=1

iβj,i(t− tj)i−1

forces that

A2βj,i +B2cj,i = (i+ 1)βj,i+1, for i = 0, ..., k − 1

A2βj,k +B2cj,k = 0.

Note: need to prove that A2 is full rank (it appears to be in practice). Solve
backwards (i = k, k − 1, ..., 0) for βj,i. Finally, the continuity and the terminal
boundary condition s(tf ) = 0 gives

eA(tj+1−tj)αj +

k∑
i=0

βj,i(tj+1 − tj)i+1 = s(tj+1).

2



1.2 Reading out k2(t)

The remaining term for the controller is a simple read-out given the solution to
s2(t):

k2(t) = −h
g
R−1z̄d(t)− 1

2
R−1BT s2(t)

which can be written as

k2(t) = αLe
A2(t−tj)αj,R +

k∑
i=0

γj,i(t− tj)i

with

αL = −1

2
R−1BT

αR = αj,R = αj

γj,i = −h
g
R−1cj,i −

1

2
R−1BTβj,i

1.3 Solving for xcom(t)

The resulting system is

ẋ = Ax+B (K1x+ k2(t)) = (A+BK1)x+Bk2(t),

where x = [xcom, ycom, ẋcom, ẏcom]T . Since the solution k2(t) is the result of
another linear system (cascaded in front of this one), it is easiest for me to solve

jointly, using y =

[
x
s2

]
:

ẏ = Ayy +By z̄d

Ay =

[
A+BK1 − 1

2BR
−1BT

0 A2

]
, By =

[
−h

gBR
−1

B2

]

y(t) = eAy(t−tj)aj +

k∑
i=0

bj,i(t− tj)i

i can solve for b using the same technique as above (and re-using the β sol),
and then solve for the top half of aj forward in time.

1.4 Solving for s3(t)

Having solved for s2(t), the dynamics of s3(t) in segment j can be written as

ṡ3(t) = z̄Td (t)

(
h2

g2
R−1 − I

)
z̄d(t) +

1

4
sT2 (t)BR−1BT s2(t) +

h

g
z̄Td (t)R−1BT s2(t)

3



Let us rewrite our vector polynomials as, for instance, z̄d(t) = ~cjmk(t− tj),
with

cj =
[
cj,0 cj,1 ... cj,k

]
and

mk(t) =


1
t
t1

...
tk

 .
We will also use the fact that

(eAt)T eAt = e(A
T+A)t.

Then we have (dropping the j’s for notational convenience and leaving tj = 0):

ṡ3(t) =mT
k (t)

[
cT
(
h2

g2
R−1 − I

)
c +

1

4
βTβ

]
mk(t) +

1

4
αT eA

T
2 tBTR−1BeA2tα...

+mT
k (t)

[
1

2
βTB +

h

g
cT
]
R−1BT eA2tα

The integral of this is ugly, and the requirement for accuracy here is less
strict. For parsimony, we will approximate s3(t) with a Hermite cubic spline
with the values and derivatives set (analytically) at the breakpoints of the de-
sired ZMP trajectory. This means that we can cut a few computational corners
in order to evaluate the value of s3(t) at the breakpoints, instead of maintaining

the entire closed-form solution. Note that ˙s3(t) is continuous - the left and right
derivates are equal.

We’ll make use of the following steps to complete the integral:

d

dt
mk(t) =


0
1
2t
...

ktk−1

 =

[
01×k

diag(1, 2, · · · , k)

]
mk−1(t) ≡ Dkmk−1(t)

∫
mk(t)dt =


t

1
2 t

2

...
1

k+1 t
k+1

 =
[
0k+1×1 diag(1, 12 , · · · ,

1
k+1 )

]
mk+1(t) ≡ D]

k+1mk+1(t)

∫ a

0

mk(t)dt =D]
k+1mk+1(a)

Note :Dk is k + 1× k,D]
k is pinv(Dk)∫

eAtdt =A−1eAt∫ a

0

mT
k (t)Pmk(t)dt =

∫ a

0

Tr(Pmk(t)mT
k (t))dt =

∫ a

0

vec(PT )T vec(mk(t)mT
k (t))dt

4


