1 ZMP LQR Riccati Equation

Using z(t) as the 2D position of the ZMP, we formulate:
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This can be rewritten as a cost on state, in coordinates relative to the final

conditions, T = x — [z} (t) 0 O]T, Zq(t) = za(t) — za(ty):
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Note that this implies that Z(co) = 0 in order for the cost to be finite.
The resulting cost-to-go is given by

J =771 ()7 + 77 sa(t) + s3(t),
with the corresponding Riccati differential equation given by
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Note that S; has no time-dependent terms, and therefore S;(t) is a constant,
given by the steady-state solution of the algebraic Riccati equation (e.g. from
time-invariant LQR). Similarly, the feedback controller is given by

u(t) = K1(8)T + ka(t),



and again the feedback K (t) is a constant (derived from the infinite horizon
LQR with @, R, and N set as above).

1.1 Solving for sy(t)

Given this, the affine terms in the Riccati differential equation are given by the
linear differential equations:

59(t) = Agsa(t) + BaZ4(t), s2(ty) =0
with
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Assuming z4(t) is described by a continuous piecewise polynomial of degree k
with n 4+ 1 breaks at ¢; (with ¢ty = 0 and ¢, = ty):
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this system has a closed-form solution given by:
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with a; and 3;,; vector parameters to be solved for. Taking
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forces that

Ag,@jﬂ' + BQCjJ' = (Z + l)ﬁj,i-&-l) for i = O, veey k—1
AsBj 1 + Bacjr = 0.

Note: need to prove that Ay is full rank (it appears to be in practice). Solve
backwards (i = k,k —1,...,0) for 3, ;. Finally, the continuity and the terminal
boundary condition s(ty) = 0 gives
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1.2 Reading out ky(t)

The remaining term for the controller is a simple read-out given the solution to

s9(t): . )
ko(t) = —ER‘lzd(t) — 5R—lBTsQ(t)

which can be written as
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1.3 Solving for z.,,(t)
The resulting system is
t=Ax+ B (K1$ + k‘g(t)) = (A + BKl)x + Bk?g(t),

where = [Tcom, Yeoms Teoms Yeom) - Since the solution ky(t) is the result of
another linear system (cascaded in front of this one), it is easiest for me to solve

jointly, using y = L } :
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i can solve for b using the same technique as above (and re-using the 3 sol),
and then solve for the top half of a; forward in time.

1.4 Solving for s3(t)

Having solved for sa(t), the dynamics of s3(t) in segment j can be written as

s3(t) = Z2 (1) (ZiRl - I) Za(t) + %sg(t)BRleTsz(t) + Szg(t)RleTSQ(t)



Let us rewrite our vector polynomials as, for instance, z4(t) = ¢;my(t —t;),

with
Cj = [Cj,O Cj,l Cj,k]
and
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We will also use the fact that
(eAt)TeAt _ e(AT+A)t.

Then we have (dropping the j’s for notational convenience and leaving ¢; = 0):
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The integral of this is ugly, and the requirement for accuracy here is less
strict. For parsimony, we will approximate s3(t) with a Hermite cubic spline
with the values and derivatives set (analytically) at the breakpoints of the de-
sired ZMP trajectory. This means that we can cut a few computational corners
in order to evaluate the value of s3(t) at the breakpoints, instead of maintaining
the entire closed-form solution. Note that s3(¢) is continuous - the left and right

derivates are equal.

We’ll make use of the following steps to complete the integral:
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